Department of Electrical and Computer Engineering

Filter
Chapter

Search results

  • 2020

    Deep-learning-based approach for outdoor electrical insulator inspection

    Pernebayeva, D. & James Pappachen, A., Jan 1 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 81-88 8 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • Deep learning theory simplified

    Bakambekova, A. & James Pappachen, A., Jan 1 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 41-55 15 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • Deep neuro-fuzzy architectures

    Dorzhigulov, A. & James Pappachen, A., Jan 1 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 195-213 19 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    4 Citations (Scopus)
  • Getting started with TensorFlow deep learning

    Toleubay, Y. & James Pappachen, A., Jan 1 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 57-67 11 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    3 Citations (Scopus)
  • HTM theory

    Dauletkhanuly, Y., Krestinskaya, O. & James, A. P., 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 169-180 12 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    1 Citation (Scopus)
  • Introduction to neuro-memristive systems

    James Pappachen, A., Jan 1 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 3-12 10 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • Learning algorithms and implementation

    Krestinskaya, O. & James Pappachen, A., Jan 1 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 91-102 12 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    2 Citations (Scopus)
  • Memristive deep convolutional neural networks

    Krestinskaya, O. & James Pappachen, A., Jan 1 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 131-137 7 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    1 Citation (Scopus)
  • Memristive hierarchical temporal memory

    Krestinskaya, O., Dolzhikova, I. & James Pappachen, A., Jan 1 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 181-194 14 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • Memristive LSTM architectures

    Adam, K., Smagulova, K. & James Pappachen, A., 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 155-167 13 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    1 Citation (Scopus)
  • Memristive threshold logic networks

    Dolzhikova, I., Kumar Maan, A. & James Pappachen, A., 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 117-130 14 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • Memristors: Properties, models, materials

    Krestinskaya, O., Irmanova, A. & James, A. P., 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 13-40 28 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    2 Citations (Scopus)
  • Multi-level memristive memory for neural networks

    Irmanova, A., Myrzakhmet, S. & James, A. P., 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 103-116 14 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • Overview of long short-term memory neural networks

    Smagulova, K. & James Pappachen, A., Jan 1 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 139-153 15 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    3 Citations (Scopus)
  • Speech recognition application using deep learning neural network

    Izbassarova, A., Duisembay, A. & James, A. P., 2020, Modeling and Optimization in Science and Technologies. Springer Verlag, p. 69-79 11 p. (Modeling and Optimization in Science and Technologies; vol. 14).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    1 Citation (Scopus)
  • 2017

    A review of feature and data fusion with medical images

    James, A. P. & Dasarathy, B. V., Jan 1 2017, Multisensor Data Fusion: From Algorithms and Architectural Design to Applications. CRC Press, p. 491-507 17 p.

    Research output: Chapter in Book/Report/Conference proceedingChapter

    3 Citations (Scopus)
  • Efficient lower limb exoskeleton for human motion assistance

    Mir-Nasiri, N., Jan 1 2017, Biosystems and Biorobotics. Springer International Publishing AG, p. 293-297 5 p. (Biosystems and Biorobotics; vol. 16).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    1 Citation (Scopus)
  • Machining of Glass Materials: An Overview

    Perveen, A. & Molardi, C., Apr 30 2017, Advanced Manufacturing Technologies: Modern Machining, Advanced Joining, Sustainable Manufacturing. Gupta, K. (ed.). Cham: Springer International Publishing AG, p. 23-47 25 p.

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • Machining of Microshapes and Features

    Perveen, A. & Molardi, C., Oct 17 2017, Micro and Precision Manufacturing. Gupta, K. (ed.). Cham: Springer International Publishing AG, p. 1-19 19 p.

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • Radio frequency sensing for assistive monitoring

    Kho, Y. H., 2017, Smart Sensors, Measurement and Instrumentation. Springer International Publishing, p. 241-258 18 p. (Smart Sensors, Measurement and Instrumentation; vol. 22).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • 2015

    Aggregation of Spectrum Opportunities

    Kaltenberger, F., Tsiftsis, T. A., Foukalas, F., Ping, S. & Holland, O., Jul 24 2015, Opportunistic Spectrum Sharing and White Space Access: The Practical Reality. wiley, p. 221-238 18 p.

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • 2014

    Autonomous tracking of vehicle taillights and alert signal detection by embedded smart cameras

    Almagambetov, A. & Velipasalar, S., 2014, Distributed Embedded Smart Cameras: Architectures, Design and Applications. Bobda, C. & Velipasalar, S. (eds.). 1 ed. New York, New York: Springer Verlag, p. 121-150 29 p.

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • 2013

    MACHINE INTELLIGENCE USING HEIERARCHICAL MEMORY NETWORKS

    James, AP., 2013, Handbook of Research on Computational Intelligence for Engineering, Science, and Business. IGI Global Publishing, p. 62-74 13 p.

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • Trust issues in modern embedded computing

    James, A. P. & Sherin, S., Jan 1 2013, Managing Trust in Cyberspace. CRC Press, p. 361-369 9 p.

    Research output: Chapter in Book/Report/Conference proceedingChapter

  • 2008

    An efficient image retrieval system using ordered weighted aggregation

    Arslan, S. & Yazici, A., 2008, Granular Computing: At the Junction of Rough Sets and Fuzzy Sets. Bello, R., Falcon, R., Pedrycz, W. & Kacprzyk, J. (eds.). p. 43-54 12 p. (Studies in Fuzziness and Soft Computing; vol. 224).

    Research output: Chapter in Book/Report/Conference proceedingChapter

    2 Citations (Scopus)