A hybrid memristor–CMOS chip for AI

Alex Pappachen James

Research output: Contribution to journalArticle

Abstract

An integrated co-processor chip based on a memristor crossbar array and complementary metal–oxide–semiconductor (CMOS) control circuitry can be used to implement neuromorphic and machine learning algorithms.

Original languageEnglish
Pages (from-to)268-269
Number of pages2
JournalNature Electronics
Volume2
Issue number7
DOIs
Publication statusPublished - Jul 1 2019

Fingerprint

Memristors
machine learning
Learning algorithms
learning
central processing units
Learning systems
chips
Coprocessor

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Electrical and Electronic Engineering

Cite this

A hybrid memristor–CMOS chip for AI. / James, Alex Pappachen.

In: Nature Electronics, Vol. 2, No. 7, 01.07.2019, p. 268-269.

Research output: Contribution to journalArticle

James, Alex Pappachen. / A hybrid memristor–CMOS chip for AI. In: Nature Electronics. 2019 ; Vol. 2, No. 7. pp. 268-269.
@article{d829473f5ec54f9fa0fa8084ac932143,
title = "A hybrid memristor–CMOS chip for AI",
abstract = "An integrated co-processor chip based on a memristor crossbar array and complementary metal–oxide–semiconductor (CMOS) control circuitry can be used to implement neuromorphic and machine learning algorithms.",
author = "James, {Alex Pappachen}",
year = "2019",
month = "7",
day = "1",
doi = "10.1038/s41928-019-0274-6",
language = "English",
volume = "2",
pages = "268--269",
journal = "Nature Electronics",
issn = "2520-1131",
publisher = "Nature Publishing Group",
number = "7",

}

TY - JOUR

T1 - A hybrid memristor–CMOS chip for AI

AU - James, Alex Pappachen

PY - 2019/7/1

Y1 - 2019/7/1

N2 - An integrated co-processor chip based on a memristor crossbar array and complementary metal–oxide–semiconductor (CMOS) control circuitry can be used to implement neuromorphic and machine learning algorithms.

AB - An integrated co-processor chip based on a memristor crossbar array and complementary metal–oxide–semiconductor (CMOS) control circuitry can be used to implement neuromorphic and machine learning algorithms.

UR - http://www.scopus.com/inward/record.url?scp=85069447479&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069447479&partnerID=8YFLogxK

U2 - 10.1038/s41928-019-0274-6

DO - 10.1038/s41928-019-0274-6

M3 - Article

AN - SCOPUS:85069447479

VL - 2

SP - 268

EP - 269

JO - Nature Electronics

JF - Nature Electronics

SN - 2520-1131

IS - 7

ER -