TY - JOUR
T1 - A note on the quartic generalized Korteweg–de Vries equation in weighted Sobolev spaces
AU - Castro, Alejandro J.
AU - Esfahani, Amin
AU - Zhapsarbayeva, Lyailya
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2024/1
Y1 - 2024/1
N2 - In this paper we establish the persistence property for solutions of the quartic generalized Korteweg–de Vries equation with initial data in weighted Sobolev spaces Hs(R)∩L2(|x|2rdx) for s=1/12+ɛ and any r∈(0,R), for some 0<ɛ<1/4 and 0<R
AB - In this paper we establish the persistence property for solutions of the quartic generalized Korteweg–de Vries equation with initial data in weighted Sobolev spaces Hs(R)∩L2(|x|2rdx) for s=1/12+ɛ and any r∈(0,R), for some 0<ɛ<1/4 and 0<R
KW - Fractional derivative
KW - Korteweg–de Vries equations
KW - Persistence property
KW - Weighted Sobolev space
UR - http://www.scopus.com/inward/record.url?scp=85173534545&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85173534545&partnerID=8YFLogxK
U2 - 10.1016/j.na.2023.113400
DO - 10.1016/j.na.2023.113400
M3 - Article
AN - SCOPUS:85173534545
SN - 0362-546X
VL - 238
JO - Nonlinear Analysis, Theory, Methods and Applications
JF - Nonlinear Analysis, Theory, Methods and Applications
M1 - 113400
ER -