A novel self-nanoemulsifying drug delivery system for curcumin used in the treatment of wound healing and inflammation

Niyaz Ahmad, Rizwan Ahmad, Ali Al-Qudaihi, Salman Edrees Alaseel, Ibrahim Zuhair Fita, Mohammed Saifuddin Khalid, Faheem Hyder Pottoo, Srinivasa Rao Bolla

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


The main objective of this study was to develop and evaluate self-nanoemulsifying drug delivery system (SNEDDS) of curcumin (Cur) to enhance their solubility as well as improve skin permeation; and evaluate wound healing potential of Cur via SNEDDS in comparison with standards pure eucalyptus oil-SNEDDS (Euc-SNEDDS), pure curcumin suspension (Cur-S), and standard fusidic acid followed by their anti-inflammatory action. Curcumin-loaded different SNEDDS formulations were formulated through aqueous phase titration method and the zones of SNEDDS were recognized by the construction of phase diagrams. Eucalyptus oil, Tween 80 (surfactant), and Transcutol HP (co-surfactant) were selected on the basis of their solubility and highest nanoemulsion region. Characterization of thermodynamic stability for Cur-loaded SNEDDS was evaluated by its globule size, zeta potential, polydispersity index, viscosity, % transmittance, refractive index, and surface morphology. Cur-SNEDDS (Cur-SN4) was optimized and selected on the basis of their excellent physicochemical parameters for in vivo activity. The particle size (59.56 ± 0.94 nm), % transmittance (99.08 ± 0.07%), and PDI (0.207 ± 0.011 were observed for optimized Cur-SNEDDS. TEM and SEM showed their smooth and spherical shape of the morphological characterization with zeta potential (− 21.41 ± 0.89), refractive index (1.341 ± 0.06), and viscosity (11.64 ± 1.26 cp) for optimized Cur-SNEDDS. Finally, optimized Cur-SNEDDS was used to enhance skin permeation with improvement in the solubility of Cur. However, optimized Cur-SNEDDS showed significant wound healing activity as compared with pure eucalyptus oil and Cur-S on topical application. Optimized Cur-SNEDDS showed healing of wound as compared to standard fusidic acid. Optimized Cur-SNEDDS exhibited no signs of inflammatory cells on the histopathological studies of treated rats which were recommended the safety and non-toxicity of Cur-SNEDDS. Newly developed Cur-SNEDDS could be successfully used to enhance Cur-solubility and skin permeation, as well as suggested a potential role of Cur-SNEDDS for better improvement of wound healing activity followed by anti-inflammatory action of Cur via topical application.

Original languageEnglish
Article number360
Journal3 Biotech
Issue number10
Publication statusPublished - Oct 1 2019
Externally publishedYes


  • Curcumin
  • Enhancement of solubility
  • Release and skin permeation study
  • Transdermal delivery
  • Wound healing with anti-inflammatory action

ASJC Scopus subject areas

  • Biotechnology
  • Environmental Science (miscellaneous)
  • Agricultural and Biological Sciences (miscellaneous)

Fingerprint Dive into the research topics of 'A novel self-nanoemulsifying drug delivery system for curcumin used in the treatment of wound healing and inflammation'. Together they form a unique fingerprint.

Cite this