TY - JOUR
T1 - A porous puckered V2O5 polymorph as new high performance cathode material for aqueous rechargeable zinc batteries
AU - Batyrbekuly, Dauren
AU - Laïk, Barbara
AU - Pereira-Ramos, Jean Pierre
AU - Bakenov, Zhumabay
AU - Baddour-Hadjean, Rita
N1 - Funding Information:
One of the authors wishes to thank the Ministry of Education and Science of Kazakhstan (grant number AP05136016-ZRABS), French Embassy in Astana, Kazakhstan and Campus France for financial support. All the authors thank Dr. Nicolas Emery (ICMPE-CNRS) for assistance in refinement of XRD data.
Funding Information:
One of the authors wishes to thank the Ministry of Education and Science of Kazakhstan (grant number AP05136016-ZRABS), French Embassy in Astana, Kazakhstan and Campus France for financial support. All the authors thank Dr. Nicolas Emery (ICMPE-CNRS) for assistance in refinement of XRD data.
Publisher Copyright:
© 2021 Science Press
PY - 2021/10
Y1 - 2021/10
N2 - Aqueous rechargeable zinc batteries are getting increasing attention for large-scale energy storage owing to their advantages in terms of cost, environmental friendliness and safety. Here, the layered puckered γ′-V2O5 polymorph with a porous morphology is firstly introduced as cathode for an aqueous zinc battery system in a binary Zn2+/Li+ electrolyte. The Zn|| γ′-V2O5 cell delivers high capacities of 240 and 190 mAh g−1 at current densities of 29 and 147 mA g−1, respectively, and remarkable cycling stability in the 1.6 V–0.7 V voltage window (97% retention after 100 cycles at 0.15 A g−1). The detailed structural evolution during first discharge-charge and subsequent cycling is investigated using X-ray diffraction and Raman spectroscopy. We demonstrate a reaction mechanism based on a selective Li insertion in the 1.6 V–1.0 V voltage range. It involves a reversible exchange of 0.8 Li+ in γ′-V2O5 and the same structural response as the one reported in lithiated organic electrolyte. However, in the extended 1.6 V–0.7 V voltage range, this work puts forward a concomitant and gradual phase transformation from γ′-V2O5 to zinc pyrovanadate Zn3V2O7(OH)2.2H2O (ZVO) during cycling. Such mechanism involving the in-situ formation of ZVO, known as an efficient Zn and Li intercalation material, explains the high electrochemical performance here reported for the Zn|| γ′-V2O5 cell. This work highlights the peculiar layered-puckered γ′-V2O5 polymorph outperforms the conventional α-V2O5 with a huge improvement of capacity of 240 mAh g−1 vs 80 mAh g−1 in the same electrolyte and voltage window.
AB - Aqueous rechargeable zinc batteries are getting increasing attention for large-scale energy storage owing to their advantages in terms of cost, environmental friendliness and safety. Here, the layered puckered γ′-V2O5 polymorph with a porous morphology is firstly introduced as cathode for an aqueous zinc battery system in a binary Zn2+/Li+ electrolyte. The Zn|| γ′-V2O5 cell delivers high capacities of 240 and 190 mAh g−1 at current densities of 29 and 147 mA g−1, respectively, and remarkable cycling stability in the 1.6 V–0.7 V voltage window (97% retention after 100 cycles at 0.15 A g−1). The detailed structural evolution during first discharge-charge and subsequent cycling is investigated using X-ray diffraction and Raman spectroscopy. We demonstrate a reaction mechanism based on a selective Li insertion in the 1.6 V–1.0 V voltage range. It involves a reversible exchange of 0.8 Li+ in γ′-V2O5 and the same structural response as the one reported in lithiated organic electrolyte. However, in the extended 1.6 V–0.7 V voltage range, this work puts forward a concomitant and gradual phase transformation from γ′-V2O5 to zinc pyrovanadate Zn3V2O7(OH)2.2H2O (ZVO) during cycling. Such mechanism involving the in-situ formation of ZVO, known as an efficient Zn and Li intercalation material, explains the high electrochemical performance here reported for the Zn|| γ′-V2O5 cell. This work highlights the peculiar layered-puckered γ′-V2O5 polymorph outperforms the conventional α-V2O5 with a huge improvement of capacity of 240 mAh g−1 vs 80 mAh g−1 in the same electrolyte and voltage window.
KW - Aqueous zinc battery
KW - Cathode
KW - Energy storage
KW - High performance
KW - Layered structure
KW - Renewable energy
KW - Vanadium pentoxide
KW - γ′-VO
UR - http://www.scopus.com/inward/record.url?scp=85104338889&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104338889&partnerID=8YFLogxK
U2 - 10.1016/j.jechem.2021.01.042
DO - 10.1016/j.jechem.2021.01.042
M3 - Article
AN - SCOPUS:85104338889
SN - 2095-4956
VL - 61
SP - 459
EP - 468
JO - Journal of Energy Chemistry
JF - Journal of Energy Chemistry
ER -