A Scholastic-Realist Modal-Structuralism

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


How are we to understand the talk about properties of structures the existence of which is conditional upon the assumption of the reality of those structures? Mathematics is not about abstract objects, yet unlike fictionalism, modal-structuralism respects the truth of theorems and proofs. But it is nominalistic with respect to possibilia. The problem is that, for fear of reducing possibilia to actualities, the second-order modal logic that claims to axiomatise modal existence has no real semantics. There is no cross-identification of higher-order mathematical entities and thus we cannot know what those entities are. I suggest that a scholastic notion of realism, interspersed with cross-identification of higher-order entities, can deliver the semantics without collapse.
Original languageEnglish
Pages (from-to)127--138
JournalPhilosophia Scientiae
Issue number3
Publication statusPublished - 2014

Fingerprint Dive into the research topics of 'A Scholastic-Realist Modal-Structuralism'. Together they form a unique fingerprint.

Cite this