TY - JOUR
T1 - A signal coverage model for two neighboring islands of different size
AU - Valagiannopoulos, C. A.
N1 - Publisher Copyright:
© 2008, Electromagnetics Academy. All rights reserved.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2008/1/1
Y1 - 2008/1/1
N2 - Point source scattering by two rectangular dielectric obstacles on a perfectly conducting screen is studied by solving approximately the integral equations resulting from the scattering theorem. The configuration can be used as a model describing antenna radiation over the sea in the presence of two islands, one of which is much larger than the other. The approach is scalar and two-dimensional, while a linear system, produced via analytical integrations, is derived to evaluate the field inside the scatterers. The received power on the two islands is presented in several diagrams as function of the material and distance parameters to estimate the signal coverage across the two regions.
AB - Point source scattering by two rectangular dielectric obstacles on a perfectly conducting screen is studied by solving approximately the integral equations resulting from the scattering theorem. The configuration can be used as a model describing antenna radiation over the sea in the presence of two islands, one of which is much larger than the other. The approach is scalar and two-dimensional, while a linear system, produced via analytical integrations, is derived to evaluate the field inside the scatterers. The received power on the two islands is presented in several diagrams as function of the material and distance parameters to estimate the signal coverage across the two regions.
UR - http://www.scopus.com/inward/record.url?scp=80052413759&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052413759&partnerID=8YFLogxK
U2 - 10.2528/PIERM08040303
DO - 10.2528/PIERM08040303
M3 - Article
AN - SCOPUS:80052413759
VL - 2
SP - 115
EP - 130
JO - Seminars in Interventional Radiology
JF - Seminars in Interventional Radiology
SN - 0739-9529
ER -