A support vector regression model for predicting tunnel boring machine penetration rates

Satar Mahdevari, Kourosh Shahriar, Saffet Yagiz, Mohsen Akbarpour Shirazi

Research output: Contribution to journalArticlepeer-review

92 Citations (Scopus)


With widespread increasing applications of mechanized tunneling in almost all ground conditions, prediction of tunnel boring machine (TBM) performance is required for time planning, cost control and choice of excavation method in order to make tunneling economical. Penetration rate is a principal measure of full-face TBM performance and is used to evaluate the feasibility of the machine and predict advance rate of excavation. This research aims at developing a regression model to predict penetration rate of TBM in hard rock conditions based on a new artificial intelligence (AI) algorithm namely support vector regression (SVR). For this purpose, the Queens Water Tunnel, in New York City, was selected as a case study to test the proposed model. In order to find out the optimum values of the parameters and prevent over-fitting, 80% of the total data were selected randomly for training set and the rest were kept for testing the model. According to the results, it can be said that the proposed model is a useful and reliable means to predict TBM penetration rate provided that a suitable dataset exists. From the prediction results of training and testing samples, the squared correlation coefficient (R2) between the observed and predicted values of the proposed model was obtained 0.99 and 0.95, respectively, which shows a high conformity between predicted and actual penetration rate.

Original languageEnglish
Pages (from-to)214-229
Number of pages16
JournalInternational Journal of Rock Mechanics and Mining Sciences
Publication statusPublished - Dec 1 2014
Externally publishedYes


  • Penetration rate
  • Queens water tunnel
  • SVR
  • TBM performance

ASJC Scopus subject areas

  • Geotechnical Engineering and Engineering Geology

Fingerprint Dive into the research topics of 'A support vector regression model for predicting tunnel boring machine penetration rates'. Together they form a unique fingerprint.

Cite this