Advanced numerical solver for dam-break flow application

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


In this paper, a HLL (Harten Lax van Leer) approximate Riemann solver with MUSCL scheme (Monotonic Upwind Schemes for Conservative Laws) is implemented in the presented FV (Finite Volume) model. The presented model is used to simulate different dam-break flow events to verify its capability. Four test cases are presented in this paper. In the first test case, a 1-Dimensional (1D) dambreak flow is simulated over a rectangular channel with different slope limiters of the FV model (namely Godunov, Superbee, Minmod, van Leer, and van Albada). The second test case consists of a simulation of shallow water discontinuous dam-break flow over a dry-downstream bed channel. The third test simulates the shallow water dam-break flow with the existence of bed slope and bed shear stress. Finally, in the last test, the HLL-MUSCL model used in this paper and some other solver models used in literature are compared against the referred exact solution in dam-break flow application. The presented HLL-MUSCL scheme is found to give the best agreement to the exact solution.

Original languageEnglish
Pages (from-to)73-82
Number of pages10
JournalEurasian Chemico-Technological Journal
Issue number1
Publication statusPublished - 2012

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Advanced numerical solver for dam-break flow application'. Together they form a unique fingerprint.

Cite this