An Air Quality Modeling and Disability-Adjusted Life Years (DALY) Risk Assessment Case Study: Comparing Statistical and Machine Learning Approaches for PM2.5 Forecasting

Akmaral Agibayeva, Rustem Khalikhan, Mert Guney, Ferhat Karaca, Aisulu Torezhan, Egemen Avcu

Research output: Contribution to journalArticlepeer-review

Abstract

Despite Central and Northern Asia having several cities sharing a similar harsh climate and grave air quality concerns, studies on air pollution modeling in these regions are limited. For the first time, the present study uses multiple linear regression (MLR) and a random forest (RF) algorithm to predict PM2.5 concentrations in Astana, Kazakhstan during heating and non-heating periods (predictive variables: air pollutant concentrations, meteorological parameters). Estimated PM2.5 was then used for Disability-Adjusted Life Years (DALY) risk assessment. The RF model showed higher accuracy than the MLR model (R2 from 0.79 to 0.98 in RF). MLR yielded more conservative predictions, making it more suitable for use with a lower number of predictor variables. PM10 and carbon monoxide concentrations contributed most to the PM2.5 prediction (both models), whereas meteorological parameters showed lower association. Estimated DALY for Astana’s population (2019) ranged from 2160 to 7531 years. The developed methodology is applicable to locations with comparable air pollution and climate characteristics. Its output would be helpful to policymakers and health professionals in developing effective air pollution mitigation strategies aiming to mitigate human exposure to ambient air pollutants.

Original languageEnglish
Article number16641
JournalSustainability (Switzerland)
Volume14
Issue number24
DOIs
Publication statusPublished - Dec 2022

Keywords

  • air pollution
  • Astana
  • human health risk assessment
  • Kazakhstan
  • multiple linear regression
  • particulate matter
  • public health
  • random forest

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Building and Construction
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Hardware and Architecture
  • Computer Networks and Communications
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'An Air Quality Modeling and Disability-Adjusted Life Years (DALY) Risk Assessment Case Study: Comparing Statistical and Machine Learning Approaches for PM2.5 Forecasting'. Together they form a unique fingerprint.

Cite this