An optimized field function scheme for nanoparticle guidance in magnetic drug targeting systems

Ton Duc Do, Yeongil Noh, Myeong Ok Kim, Jungwon Yoon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

Magnetic drug targeting is an approach to guide and concentrate magnetic nanoparticles (MNPs) into the diseased target organ after being injected into blood vessels. Although many works for drug targeting have been conducted, there are few studies on delivering the nanoparticles to the target region. Drug delivery performance has not been addressed sufficiently or fully. In this paper, we investigate the effect of dominant factors to MNPs delivery performance. Then, an optimized field function scheme with a pulsed magnetic actuation is proposed to significantly improve the MNPs guidance performance. With a specific condition of blood vessel size, particle size, and applied magnetic field, the optimized parameters of the field function are selected through extensive simulation studies. We find out that the optimal negative and positive time for the magnetic pulsed field mainly depends on the exit time for particles to reach the bifurcation and the critical time as the maximum time for them to reach the vessels wall, respectively. With the chosen parameters, we show that ratios of correctly guided particles in a Y-channel are reached to 100%. In addition, to minimize the power consumption, a modified field function (MFF) scheme is introduced. The MFF includes a no-power time, called zero-time, between the positive and negative time. It is shown that with the proposed MFF, the energy consumption and the heating problem of the actuator system can be significantly reduced. Therefore, the proposed guidance scheme for MNPs can overcome the sticking issue and maximize the guidance performance as well as reducing the power consumption. It should be noted that the MFF can be easily implement by programmable DC power supplies connected to electromagnetic coils.

Original languageEnglish
Title of host publicationIROS Hamburg 2015 - Conference Digest
Subtitle of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4388-4393
Number of pages6
ISBN (Electronic)9781479999941
DOIs
Publication statusPublished - Dec 11 2015
EventIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015 - Hamburg, Germany
Duration: Sept 28 2015Oct 2 2015

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2015-December
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

OtherIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015
Country/TerritoryGermany
CityHamburg
Period9/28/1510/2/15

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'An optimized field function scheme for nanoparticle guidance in magnetic drug targeting systems'. Together they form a unique fingerprint.

Cite this