Application of nanofluid to control fines migration to improve the performance of low salinity water flooding and alkaline flooding

Yasaman Assef, Danial Arab, Peyman Pourafshary

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Low salinity water (LSW) and alkaline flooding have been recognized as the two efficient improved oil recovery techniques to unlock residual oil. It has been widely reported that the efficiency of these methods critically improves with decreasing salinity and increasing pH of the slug injected during LSW and alkaline flooding respectively, and greater amount of oil can be recovered in these conditions. However, these chemical environments of low salinity and high pH are very unfavorable for in-situ particles retention and as a result, fines migration and subsequent formation damage is an accompanying phenomenon with these techniques. Therefore, one should choose the optimum salinity rather than the lower one to enhance the efficiency of a typical LSW project and also, the optimum pH for the injected slugs rather than the higher one to improve the efficiency of an alkaline flooding project. These limitations make the design of such flooding projects very difficult and challenging. This experimental work aims to probe nanoparticle (NP) treatment of colloidal particles migration occurred during the mentioned unfavorable conditions for particles retention. Zeta potential and turbidity analyses have been utilized as quantified tools to examine the effect of NPs on the interactions of colloidal particles with the medium surface. It was found that MgO NP can modify the zeta potential of the medium and in turn remarkably retain the colloidal fines in the presence of very low concentration of both monovalent and divalent salts; therefore, fines migration induced during low salinity conditions can be prevented. Furthermore, the presence of MgO NP on the beads surface significantly modifies/increases the point of zero charge (PZC) from around 3 to around 9 which in turn justifies the retention of particles in a wide range of alkaline conditions. It was found that the MgO NP-treated medium tends to retain around 97% of the in-situ fine particles at very alkaline conditions. Therefore, pre-flush of the medium with a slug of MgO nanofluid prior to alkaline flooding or LSW injection into the reservoir can serve as a promising remedy to counteract against the colloidal particles migration subsequently induced. This technique is of great interest in field application where improving oil recovery is desired; however, fines migration and subsequent formation damage should be avoided.

Original languageEnglish
Pages (from-to)331-340
Number of pages10
JournalJournal of Petroleum Science and Engineering
Volume124
DOIs
Publication statusPublished - Dec 1 2014
Externally publishedYes

Fingerprint

flooding
Nanoparticles
Zeta potential
slug
Water
salinity
oil
Recovery
Water injection
Turbidity
damage
Salts
particle
water salinity
Oils
turbidity
probe
salt
nanoparticle
project

Keywords

  • Enhanced alkaline flooding
  • Fines migration
  • Low salinity water flooding
  • Nanoparticle
  • Point of zero charge alteration
  • Porous media

ASJC Scopus subject areas

  • Fuel Technology
  • Geotechnical Engineering and Engineering Geology

Cite this

@article{3a4dd57dfcaf4e76985e02175309286a,
title = "Application of nanofluid to control fines migration to improve the performance of low salinity water flooding and alkaline flooding",
abstract = "Low salinity water (LSW) and alkaline flooding have been recognized as the two efficient improved oil recovery techniques to unlock residual oil. It has been widely reported that the efficiency of these methods critically improves with decreasing salinity and increasing pH of the slug injected during LSW and alkaline flooding respectively, and greater amount of oil can be recovered in these conditions. However, these chemical environments of low salinity and high pH are very unfavorable for in-situ particles retention and as a result, fines migration and subsequent formation damage is an accompanying phenomenon with these techniques. Therefore, one should choose the optimum salinity rather than the lower one to enhance the efficiency of a typical LSW project and also, the optimum pH for the injected slugs rather than the higher one to improve the efficiency of an alkaline flooding project. These limitations make the design of such flooding projects very difficult and challenging. This experimental work aims to probe nanoparticle (NP) treatment of colloidal particles migration occurred during the mentioned unfavorable conditions for particles retention. Zeta potential and turbidity analyses have been utilized as quantified tools to examine the effect of NPs on the interactions of colloidal particles with the medium surface. It was found that MgO NP can modify the zeta potential of the medium and in turn remarkably retain the colloidal fines in the presence of very low concentration of both monovalent and divalent salts; therefore, fines migration induced during low salinity conditions can be prevented. Furthermore, the presence of MgO NP on the beads surface significantly modifies/increases the point of zero charge (PZC) from around 3 to around 9 which in turn justifies the retention of particles in a wide range of alkaline conditions. It was found that the MgO NP-treated medium tends to retain around 97{\%} of the in-situ fine particles at very alkaline conditions. Therefore, pre-flush of the medium with a slug of MgO nanofluid prior to alkaline flooding or LSW injection into the reservoir can serve as a promising remedy to counteract against the colloidal particles migration subsequently induced. This technique is of great interest in field application where improving oil recovery is desired; however, fines migration and subsequent formation damage should be avoided.",
keywords = "Enhanced alkaline flooding, Fines migration, Low salinity water flooding, Nanoparticle, Point of zero charge alteration, Porous media",
author = "Yasaman Assef and Danial Arab and Peyman Pourafshary",
year = "2014",
month = "12",
day = "1",
doi = "10.1016/j.petrol.2014.09.023",
language = "English",
volume = "124",
pages = "331--340",
journal = "Journal of Petroleum Science and Engineering",
issn = "0920-4105",
publisher = "Elsevier",

}

TY - JOUR

T1 - Application of nanofluid to control fines migration to improve the performance of low salinity water flooding and alkaline flooding

AU - Assef, Yasaman

AU - Arab, Danial

AU - Pourafshary, Peyman

PY - 2014/12/1

Y1 - 2014/12/1

N2 - Low salinity water (LSW) and alkaline flooding have been recognized as the two efficient improved oil recovery techniques to unlock residual oil. It has been widely reported that the efficiency of these methods critically improves with decreasing salinity and increasing pH of the slug injected during LSW and alkaline flooding respectively, and greater amount of oil can be recovered in these conditions. However, these chemical environments of low salinity and high pH are very unfavorable for in-situ particles retention and as a result, fines migration and subsequent formation damage is an accompanying phenomenon with these techniques. Therefore, one should choose the optimum salinity rather than the lower one to enhance the efficiency of a typical LSW project and also, the optimum pH for the injected slugs rather than the higher one to improve the efficiency of an alkaline flooding project. These limitations make the design of such flooding projects very difficult and challenging. This experimental work aims to probe nanoparticle (NP) treatment of colloidal particles migration occurred during the mentioned unfavorable conditions for particles retention. Zeta potential and turbidity analyses have been utilized as quantified tools to examine the effect of NPs on the interactions of colloidal particles with the medium surface. It was found that MgO NP can modify the zeta potential of the medium and in turn remarkably retain the colloidal fines in the presence of very low concentration of both monovalent and divalent salts; therefore, fines migration induced during low salinity conditions can be prevented. Furthermore, the presence of MgO NP on the beads surface significantly modifies/increases the point of zero charge (PZC) from around 3 to around 9 which in turn justifies the retention of particles in a wide range of alkaline conditions. It was found that the MgO NP-treated medium tends to retain around 97% of the in-situ fine particles at very alkaline conditions. Therefore, pre-flush of the medium with a slug of MgO nanofluid prior to alkaline flooding or LSW injection into the reservoir can serve as a promising remedy to counteract against the colloidal particles migration subsequently induced. This technique is of great interest in field application where improving oil recovery is desired; however, fines migration and subsequent formation damage should be avoided.

AB - Low salinity water (LSW) and alkaline flooding have been recognized as the two efficient improved oil recovery techniques to unlock residual oil. It has been widely reported that the efficiency of these methods critically improves with decreasing salinity and increasing pH of the slug injected during LSW and alkaline flooding respectively, and greater amount of oil can be recovered in these conditions. However, these chemical environments of low salinity and high pH are very unfavorable for in-situ particles retention and as a result, fines migration and subsequent formation damage is an accompanying phenomenon with these techniques. Therefore, one should choose the optimum salinity rather than the lower one to enhance the efficiency of a typical LSW project and also, the optimum pH for the injected slugs rather than the higher one to improve the efficiency of an alkaline flooding project. These limitations make the design of such flooding projects very difficult and challenging. This experimental work aims to probe nanoparticle (NP) treatment of colloidal particles migration occurred during the mentioned unfavorable conditions for particles retention. Zeta potential and turbidity analyses have been utilized as quantified tools to examine the effect of NPs on the interactions of colloidal particles with the medium surface. It was found that MgO NP can modify the zeta potential of the medium and in turn remarkably retain the colloidal fines in the presence of very low concentration of both monovalent and divalent salts; therefore, fines migration induced during low salinity conditions can be prevented. Furthermore, the presence of MgO NP on the beads surface significantly modifies/increases the point of zero charge (PZC) from around 3 to around 9 which in turn justifies the retention of particles in a wide range of alkaline conditions. It was found that the MgO NP-treated medium tends to retain around 97% of the in-situ fine particles at very alkaline conditions. Therefore, pre-flush of the medium with a slug of MgO nanofluid prior to alkaline flooding or LSW injection into the reservoir can serve as a promising remedy to counteract against the colloidal particles migration subsequently induced. This technique is of great interest in field application where improving oil recovery is desired; however, fines migration and subsequent formation damage should be avoided.

KW - Enhanced alkaline flooding

KW - Fines migration

KW - Low salinity water flooding

KW - Nanoparticle

KW - Point of zero charge alteration

KW - Porous media

UR - http://www.scopus.com/inward/record.url?scp=84918531014&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84918531014&partnerID=8YFLogxK

U2 - 10.1016/j.petrol.2014.09.023

DO - 10.1016/j.petrol.2014.09.023

M3 - Article

VL - 124

SP - 331

EP - 340

JO - Journal of Petroleum Science and Engineering

JF - Journal of Petroleum Science and Engineering

SN - 0920-4105

ER -