Association rule mining using fuzzy spatial data cubes

Narin Isik, Adnan Yazici

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The popularity of spatial databases increases since the amount of the spatial data that need to be handled has increased by the use of digital maps, images from satellites, video cameras, medical equipment, sensor networks, etc. Spatial data are difficult to examine and extract interesting knowledge; hence, applications that assist decision-making about spatial data like weather forecasting, traffic supervision, mobile communication, etc. have been introduced. In this thesis, more natural and precise knowledge from spatial data is generated by construction of fuzzy spatial data cube and extraction of fuzzy association rules from it in order to improve decisionmaking about spatial data. This involves an extensive research about spatial knowledge discovery and how fuzzy logic can be used to develop it. It is stated that incorporating fuzzy logic to spatial data cube construction necessitates a new method for aggregation of fuzzy spatial data. We illustrate how this method also enhances the meaning of fuzzy spatial generalization rules and fuzzy association rules with a case study about weather pattern searching. This study contributes to spatial knowledge discovery by generating more understandable and interesting knowledge from spatial data by extending spatial generalization with fuzzy memberships, extending the spatial aggregation in spatial data cube construction by utilizing weighted measures, and generating fuzzy association rules from the constructed fuzzy spatial data cube.

Original languageEnglish
Title of host publicationGeographic Uncertainty in Environmental Security
Pages201-224
Number of pages24
DOIs
Publication statusPublished - 2007

Publication series

NameNATO Security through Science Series C: Environmental Security
ISSN (Print)1871-4668

Keywords

  • Fuzzy association rules
  • Fuzzy data cube
  • Fuzzy spatial data cube
  • Spatial data cube
  • Spatial knowledge discovery

ASJC Scopus subject areas

  • General Environmental Science

Fingerprint

Dive into the research topics of 'Association rule mining using fuzzy spatial data cubes'. Together they form a unique fingerprint.

Cite this