Bimodal nanoporous NiO@Ni–Si network prepared by dealloying method for stable Li-ion storage

Zhifeng Wang, Xiaomin Zhang, Xiaoli Liu, Yichao Wang, Yongguang Zhang, Yongyan Li, Weimin Zhao, Chunling Qin, Aliya Mukanova, Zhumabay Bakenov

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)


Nickelous oxide (NiO) is a promising anode for Lithium ion (Li-ion) batteries. However it suffers from rapid degradation due to large volume change upon cycling. In this work, a novel strategy to accommodate the volume change of NiO-based anodes during charge/discharge cycling through employment of the advantages of bimodal porous Nickel–Silicon (Ni–Si) network and Nickelous oxide@Nickel (NiO@Ni) shell@core structure is proposed. The designed bimodal nanoporous NiO@Ni–Si network exhibits a stable Li-ion storage property with an extremely high reversible capacity of 1656.9 mAh g−1 at 200 mA g−1 after 300 repeated cycles and 1387.1 mAh g−1 at 500 mA g−1 after 1000 cycles. It also shows a good rate performance, delivering about 400 mAh g−1 even at a current density of 2000 mA g−1. Post-cycling microscopy and impedance studies reveals the minor changes in the electrode structure that, in turn, results in an extremely low capacity degradation rate of 0.03%/cycle. The employed strategy enriches the structural design idea of dealloying products, which may further promote the development of the dealloying field and can be applied in future to prepare various types of porous shell@core anodes for Li-ion battery applications.

Original languageEnglish
Article number227550
JournalJournal of Power Sources
Publication statusPublished - Feb 15 2020


  • Bimodal
  • Dealloying
  • Li-ion battery
  • Nanoporous
  • NiO anode

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering


Dive into the research topics of 'Bimodal nanoporous NiO@Ni–Si network prepared by dealloying method for stable Li-ion storage'. Together they form a unique fingerprint.

Cite this