Biochemical status of renal epithelial Na+ channels determines apparent channel conductance, ion selectivity, and amiloride sensitivity

I. I. Ismailov, B. K. Berdiev, D. J. Benos

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

Purified bovine renal papillary Na+ channels, when reconstituted into planar lipid bilayers, reside in three conductance states: a 40-pS main state, and two subconductive states (12–13 pS and 24–26 pS). The activity of these channels is regulated by phosphorylation and by G-proteins. Protein kinase A (PKA)-induced phosphorylation increased channel activity by increasing the open state time constants from 160 +/- 30 (main conductance), and 15 +/- 5 ms (both lower conductances), respectively, to 365 +/- 30 ms for all of them. PKA phosphorylation also altered the closed time of the channel from 250 +/- 30 ms to 200 +/- 35 ms, thus shifting the channel into a lower-conductance, long open time mode. PKA phosphorylation increased the PNa:PK of the channel from 7:1 to 20:1, and shifted the amiloride inhibition curve to the right (apparent K(i)amil from 0.7 to 20 microM). Pertussis toxin-induced ADP-ribosylation of either phosphorylated of either phosphorylated or nonphosphorylated channels decreased the PNa:PK to 2:1 and 4:1, respectively, and altered K(i)amil to 8 and 2 microM for phosphorylated and nonphosphorylated channels, respectively. GTP-gamma-S treatment of either phosphorylated or nonphosphorylated channels resulted in an increase of PNa:PK to 30:1 and 10:1, respectively, and produced a leftward shift in the amiloride dose-response curve, altering K(i)amil to 0.5 and 0.1 microM, respectively. These results suggest that amiloride-sensitive renal Na+ channel biophysical characteristics are not static, but depend upon the biochemical state of the channel protein and/or its associated G-protein.

Original languageEnglish
Pages (from-to)1789-1800
Number of pages12
JournalBiophysical Journal
Volume69
Issue number5
DOIs
Publication statusPublished - 1995

ASJC Scopus subject areas

  • Biophysics

Fingerprint Dive into the research topics of 'Biochemical status of renal epithelial Na+ channels determines apparent channel conductance, ion selectivity, and amiloride sensitivity'. Together they form a unique fingerprint.

Cite this