Biocompatibility and Corrosion of Microplasma-Sprayed Titanium and Tantalum Coatings versus Titanium Alloy

Darya Alontseva, Yuliya Safarova, Sergii Voinarovych, Aleksei Obrosov, Ridvan Yamanoglu, Fuad Khoshnaw, Hasan Ismail Yavuz, Assem Nessipbekova, Aizhan Syzdykova, Bagdat Azamatov, Alexandr Khozhanov, Sabine Weiß

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

This study investigates the in vitro biocompatibility, corrosion resistance, and adhesion strength of a gas abrasive-treated Ti6Al4V alloy, alongside microplasma-sprayed titanium and tantalum coatings. Employing a novel approach in selecting microplasma spray parameters, this study successfully engineers coatings with tailored porosity, roughness, and over 20% porosity with pore sizes up to 200 μm, aiming to enhance bone in-growth and implant integration. This study introduces an innovative methodology for quantifying surface roughness using laser electron microscopy and scanning electron microscopy, facilitating detailed morphological analysis of both the substrate and coatings. Extensive evaluations, including tests for in vitro biocompatibility, corrosion resistance, and adhesive strength, revealed that all three materials are biocompatible, with tantalum coatings exhibiting superior cell proliferation and osteogenic differentiation, as well as the highest corrosion resistance. Titanium coatings followed closely, demonstrating favorable osteogenic properties and enhanced roughness, which is crucial for cell behavior and attachment. These coatings also displayed superior tensile adhesive strengths (27.6 ± 0.9 MPa for Ti and 28.0 ± 4.9 MPa for Ta), surpassing the ISO 13179-1 standard and indicating a robust bond with the substrate. Our findings offer significant advancements in biomaterials for medical implants, introducing microplasma spraying as a versatile tool for customizing implant coatings, particularly emphasizing the superior performance of tantalum coatings in terms of biocompatibility, osteogenic potential, and corrosion resistance. This suggests that tantalum coatings are a promising alternative for enhancing the performance of metal implants, especially in applications demanding high biocompatibility and corrosion resistance.

Original languageEnglish
Article number206
JournalCoatings
Volume14
Issue number2
DOIs
Publication statusPublished - Feb 2024

Keywords

  • biocompatible coatings
  • coating techniques
  • corrosion resistance
  • in vitro test
  • medical implants
  • microplasma spraying (MPS)

ASJC Scopus subject areas

  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Biocompatibility and Corrosion of Microplasma-Sprayed Titanium and Tantalum Coatings versus Titanium Alloy'. Together they form a unique fingerprint.

Cite this