TY - JOUR
T1 - Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications
T2 - A Critical Review
AU - Avcu, Egemen
AU - Bastan, Fatih E.
AU - Guney, Mert
AU - Yildiran Avcu, Yasemin
AU - Ur Rehman, Muhammad A.
AU - Boccaccini, Aldo R.
N1 - Publisher Copyright:
© 2022 Acta Materialia Inc.
PY - 2022
Y1 - 2022
N2 - For the first time, the present review critically evaluates biodegradable polymer matrix composites containing graphene-related materials (GRMs) for antibacterial applications while discussing their development, processing routes, mechanical properties, and antibacterial activity. Due to its suitable biological properties and processability, chitosan has been the most widely used biodegradable polymer for the fabrication of GRM-containing composites with antibacterial properties. The majority of biodegradable polymers (including cellulose-, gelatine-, PVA-, PCL-, and PHA-based polymers) exhibit little to no antibacterial effect alone; however, they show significant antibacterial activity (>70%) when combined with GRMs. In vitro and in vivo studies indicate that GRMs functionalization with biodegradable polymers also reduces potential GRM cytotoxicity. Overall, GRMs in biodegradable polymer matrices provide attractive antibacterial activity against a broad spectrum of bacteria (>30 different bacteria) along with improved mechanical properties over pristine polymers, where the type and the degree of improvement provided by GRMs depend on the specific matrix. For example, the addition of GRMs into chitosan, PVA, and PCL matrices increases their tensile strength by 80%, 180%, and 40%, respectively. Challenges remain in understanding the effects of processing routes and post-processing methods on the antibacterial activity and biocompatibility of biodegradable polymer/GRM composites. Given their promising properties and functionality, research on these composites is expected to further increase along with the implementation of new composite systems. These would include a wide range of applications, e.g., wound dressings, tissue engineering, drug delivery, biosensing, and photo-thermal therapy, as well as non-medical use, e.g., antibacterial food packaging, water treatment, and antibacterial fabrics. Statement of significance: Graphene-related materials (GRMs) in polymer matrices can provide excellent antibacterial activity against a broad spectrum of bacteria together with improved mechanical properties (e.g., tensile strength and elastic modulus) over pristine polymers; thus, research efforts and applications of biodegradable polymer matrix composites containing GRMs have increased notably in the last ten years. For the first time, the present review critically evaluates biodegradable polymer matrix composites containing GRMs for antibacterial applications while discussing their development, processing routes, mechanical properties, and antibacterial activity. Future research directions for each composite system are proposed to shed light on overcoming the existing challenges in composite performance (e.g., mechanical properties, toxicity) reported in the literature.
AB - For the first time, the present review critically evaluates biodegradable polymer matrix composites containing graphene-related materials (GRMs) for antibacterial applications while discussing their development, processing routes, mechanical properties, and antibacterial activity. Due to its suitable biological properties and processability, chitosan has been the most widely used biodegradable polymer for the fabrication of GRM-containing composites with antibacterial properties. The majority of biodegradable polymers (including cellulose-, gelatine-, PVA-, PCL-, and PHA-based polymers) exhibit little to no antibacterial effect alone; however, they show significant antibacterial activity (>70%) when combined with GRMs. In vitro and in vivo studies indicate that GRMs functionalization with biodegradable polymers also reduces potential GRM cytotoxicity. Overall, GRMs in biodegradable polymer matrices provide attractive antibacterial activity against a broad spectrum of bacteria (>30 different bacteria) along with improved mechanical properties over pristine polymers, where the type and the degree of improvement provided by GRMs depend on the specific matrix. For example, the addition of GRMs into chitosan, PVA, and PCL matrices increases their tensile strength by 80%, 180%, and 40%, respectively. Challenges remain in understanding the effects of processing routes and post-processing methods on the antibacterial activity and biocompatibility of biodegradable polymer/GRM composites. Given their promising properties and functionality, research on these composites is expected to further increase along with the implementation of new composite systems. These would include a wide range of applications, e.g., wound dressings, tissue engineering, drug delivery, biosensing, and photo-thermal therapy, as well as non-medical use, e.g., antibacterial food packaging, water treatment, and antibacterial fabrics. Statement of significance: Graphene-related materials (GRMs) in polymer matrices can provide excellent antibacterial activity against a broad spectrum of bacteria together with improved mechanical properties (e.g., tensile strength and elastic modulus) over pristine polymers; thus, research efforts and applications of biodegradable polymer matrix composites containing GRMs have increased notably in the last ten years. For the first time, the present review critically evaluates biodegradable polymer matrix composites containing GRMs for antibacterial applications while discussing their development, processing routes, mechanical properties, and antibacterial activity. Future research directions for each composite system are proposed to shed light on overcoming the existing challenges in composite performance (e.g., mechanical properties, toxicity) reported in the literature.
KW - Bactericide
KW - Cellulose
KW - Chitosan
KW - GO (Graphene oxide)
KW - PVA (Polyvinyl alcohol)
UR - http://www.scopus.com/inward/record.url?scp=85136292557&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85136292557&partnerID=8YFLogxK
U2 - 10.1016/j.actbio.2022.07.048
DO - 10.1016/j.actbio.2022.07.048
M3 - Review article
C2 - 35921991
AN - SCOPUS:85136292557
SN - 1742-7061
JO - Acta Biomaterialia
JF - Acta Biomaterialia
ER -