Charge Generation and Recombination in an Organic Solar Cell with Low Energetic Offsets

Niva A. Ran, John A. Love, Michael C. Heiber, Xuechen Jiao, Michael P. Hughes, Akchheta Karki, Ming Wang, Viktor V. Brus, Hengbin Wang, Dieter Neher, Harald Ade, Guillermo C. Bazan, Thuc Quyen Nguyen

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short-circuit currents (JSC) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open-circuit voltages (VOC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl-C61-butyric acid methyl ester (PC61BM), that achieves a high VOC (0.9 V) with very low energy losses (Eloss = 0.52 eV) from the energy of absorbed photons, a respectable JSC (13 mA cm−2), but a limited FF (54%) is reported. Despite the low energetic offset, the system does not suffer from field-dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge-carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the JSC, VOC, and FF can all be improved, even with very low energetic offsets.

Original languageEnglish
Article number1701073
JournalAdvanced Energy Materials
Volume8
Issue number5
DOIs
Publication statusPublished - Feb 15 2018
Externally publishedYes

Keywords

  • energetic offset
  • fill factor
  • morphology
  • organic solar cells
  • recombination

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint Dive into the research topics of 'Charge Generation and Recombination in an Organic Solar Cell with Low Energetic Offsets'. Together they form a unique fingerprint.

Cite this