Combined Effects of Sulfate and Chloride Attack on Steel Reinforced Mortar under Drying–Immersion Cycles

Hongfang Sun, Hao Zou, Xinwei Li, Shazim Ali Memon, Binyang Yuan, Feng Xing, Xiaogang Zhang, Jie Ren

Research output: Contribution to journalReview articlepeer-review

7 Citations (Scopus)

Abstract

In this study, X-ray microcomputed tomography (XCT) and nanoindentation techniques were used to evaluate the synergistic action between sulfate and chloride ingress under cyclic drying–immersion conditions on steel-reinforced mortars. Three salt solutions, namely 3% NaCl (Sc), 5% Na2SO4 (Ss), and 5% Na2SO4 + 3% NaCl (Scs), were used and 24 drying–immersion cycles were applied. The results showed that the chloride caused more severe corrosion on steel reinforcement than the sulfate while under the influence of Scs, and the presence of sulfate suppressed the steel corrosion caused by chloride. In terms the damage to the mortar cover, after 24 drying–immersion cycles, the sulfate caused the most severe damage (volume loss of approximately 7.1%) while the chloride resulted in the least damage (volume loss of approximately 2.6%). By comparing Ss and Scs, it was also found that chloride suppressed the sulfate attack by reducing the damage to the mortar cover (volume loss of approximately 6.3% for Scs). Moreover, the degradation of mortar specimens was found to be layer-dependent, as was the distribution of micro-mechanics. Regarding the micro-mechanics, the specimens of the three solutions performed differently in terms of the aforementioned properties, depending on which underlying mechanism was analyzed. This research could allow for a more accurate assessment of the factors influencing building structures in a typical aggressive marine environment.

Original languageEnglish
Article number1252
JournalBuildings
Volume12
Issue number8
DOIs
Publication statusPublished - Aug 2022

Keywords

  • chloride
  • drying–immersion cycle
  • nanoindentation
  • Portland cement mortar
  • sulfate
  • XCT

ASJC Scopus subject areas

  • Architecture
  • Civil and Structural Engineering
  • Building and Construction

Fingerprint

Dive into the research topics of 'Combined Effects of Sulfate and Chloride Attack on Steel Reinforced Mortar under Drying–Immersion Cycles'. Together they form a unique fingerprint.

Cite this