Computational study of absorption energies of organic sensitizers used in photovoltaic applications

Mannix P. Balanay, Dong Hee Kim

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)


An assessment of several range-separated (RSH) DFT functionals, such as LC-ωPBE, LC-BLYP, ωB97X-D, and CAM-B3LYP, in predicting the excited-state energies of organic sensitizers containing 2-cyano-3-(thiophen-2- yl)acrylic acid was performed. The choice of RSH DFT functional with an optimized separation parameter, ω, is crucial for calculating the excitation energies of organic dyes with extended π-conjugation. The optimized ω for TD-LC-ωPBE, TD-LC-BLYP, and TD-ωB97X-D RSH functionals are the same for both HQ-1 and HQ-2, where HQ-2 has an added thiophene moiety at the π-bridge. On the other hand, for the TD-CAM-B3LYP RSH functional, HQ-2 yielded a larger ω than HQ-1. For ground-state geometry optimization, those DFT functionals with 50% Hartree-Fock exchange showed a good correlation with the MP2-optimized geometries. Among the methods used, TD-LC-ωPBE/6-31+G(d)//mPWPW91α50/6-31G(d) in a solvent effect with ω = 0.20 Bohr-1 gave the best accuracy of <0.03 eV for the analogues with spatial overlap of 0.42 ≤ ΛHL ≤ 0.52. This study highlights the importance of a proper assessment of ω based on its charge-transfer properties when calculating the excited-state energies of the analogues. This paves the way for the proper screening of candidate analogues used in dye-sensitized solar cells in an effort to produce highly efficient solar cells.

Original languageEnglish
Pages (from-to)19424-19430
Number of pages7
JournalJournal of Physical Chemistry C
Issue number39
Publication statusPublished - Oct 6 2011
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Computational study of absorption energies of organic sensitizers used in photovoltaic applications'. Together they form a unique fingerprint.

Cite this