TY - JOUR
T1 - Cryogenic fracturing using liquid nitrogen on granite at elevated temperatures
T2 - a case study for enhanced geothermal systems in Kazakhstan
AU - Longinos, Sotirios Nik
AU - Hazlett, Randy
N1 - Publisher Copyright:
© 2024, The Author(s).
PY - 2024/12
Y1 - 2024/12
N2 - Cryogenic fracturing using liquid nitrogen (LN2) is a novel stimulation technology that enhances porosity, permeability, and rock-fluid contact area in subsurface formations targetted for geothermal energy extraction. In our experimental study, granite cores collected from the Zhylgyz region in South Kazakhstan were equilibrated at various elevated temperatures before treatments involving LN2 exposure time. Compression, Brazilian, and fracture toughness tests were performed on granite with starting temperatures ranging from 100 to 500 °C to quantify the impact of initial temperature on cryogenic fracturing and to compare with baseline geomechanical tests at 50 °C without LN2 exposure. The results show that LN2 cooling of hot granite induces mechanical rock failure and permeability enhancement. Moreover, the degree of thermo-fracturing augments with initial granite temperature, total freezing time, and number of freezing–thawing cycles. The peak load before failure of granite specimens, both in compression and Brazilian tests, reduces with the increased sample temperature difference and length of LN2 treatment. The fracture toughness of our semi-circular bend (SCB) LN2-treated specimens diminished with increasing temperature difference between granite and boiling point. In both experimental LN2 treatment processes, the specimens with an initial temperature of 500 °C before LN2 treatment formed many new fissures and extensions of pre-existing ones, showing that the plastic behavior is augmented. While cryo-fracturing experimental confirmation is recommended with site-specific samples in planning geothermal operations, these results in our work indicate a threshold downhole temperature, e.g., > 300 °C, for enhanced stimulation outcomes.
AB - Cryogenic fracturing using liquid nitrogen (LN2) is a novel stimulation technology that enhances porosity, permeability, and rock-fluid contact area in subsurface formations targetted for geothermal energy extraction. In our experimental study, granite cores collected from the Zhylgyz region in South Kazakhstan were equilibrated at various elevated temperatures before treatments involving LN2 exposure time. Compression, Brazilian, and fracture toughness tests were performed on granite with starting temperatures ranging from 100 to 500 °C to quantify the impact of initial temperature on cryogenic fracturing and to compare with baseline geomechanical tests at 50 °C without LN2 exposure. The results show that LN2 cooling of hot granite induces mechanical rock failure and permeability enhancement. Moreover, the degree of thermo-fracturing augments with initial granite temperature, total freezing time, and number of freezing–thawing cycles. The peak load before failure of granite specimens, both in compression and Brazilian tests, reduces with the increased sample temperature difference and length of LN2 treatment. The fracture toughness of our semi-circular bend (SCB) LN2-treated specimens diminished with increasing temperature difference between granite and boiling point. In both experimental LN2 treatment processes, the specimens with an initial temperature of 500 °C before LN2 treatment formed many new fissures and extensions of pre-existing ones, showing that the plastic behavior is augmented. While cryo-fracturing experimental confirmation is recommended with site-specific samples in planning geothermal operations, these results in our work indicate a threshold downhole temperature, e.g., > 300 °C, for enhanced stimulation outcomes.
UR - http://www.scopus.com/inward/record.url?scp=85181236404&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85181236404&partnerID=8YFLogxK
U2 - 10.1038/s41598-023-50223-z
DO - 10.1038/s41598-023-50223-z
M3 - Article
C2 - 38168137
AN - SCOPUS:85181236404
SN - 2045-2322
VL - 14
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 160
ER -