Cultivating hepatocytes on printed arrays of HGF and BMP7 to characterize protective effects of these growth factors during in vitro alcohol injury

Caroline N. Jones, Nazgul Tuleuova, Ji Youn Lee, Erlan Ramanculov, A. Hari Reddi, Mark A. Zern, Alexander Revzin

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

The goal of the present study was to investigate hepato-protective effects of growth factor (GF) arrays during alcohol injury. Hepatocyte growth factor (HGF) and bone morphogenetic protein (BMP)7 were mixed with collagen (I) and robotically printed onto standard glass slides to create arrays of 500 μm diameter spots. Primary rat hepatocytes were seeded on top of the arrays forming clusters corresponding in size to the underlying protein spots. Cell arrays were then injured in culture by exposure to 100. m. m ethanol for 48. h. Hepatocytes residing on GF spots were found to have less apoptosis then cells cultured on collagen-only spots. Least apoptosis (0.3% as estimated by TUNEL assay) was observed on HGF/BMP7/collagen spots whereas most apoptosis (17.3%) was seen on collagen-only arrays. Interestingly, the extent of alcohol-induced apoptosis in hepatocytes varied based on the concentration of printed GF. In addition to preventing apoptosis, printed GFs contributed to maintenance of epithelial phenotype during alcohol injury as evidenced by higher levels of E-cadherin expression in HGF-protected hepatocytes. Importantly, GF microarrays could be used to investigate heterotypic interactions in the context of liver injury. To highlight this, stellate cells - nonparenchymal liver cells involved in fibrosis - were added to hepatocytes residing on arrays of either HGF/collagen or collagen-only spots. Exposure of these cocultures to ethanol followed by RT-PCR analysis revealed that stellate cells residing alongside HGF-protected hepatocytes were significantly less activated (less fibrotic) compared to controls. Overall, our results demonstrate that GF microarray format can be used to screen anti-fibrotic and anti-apoptotic effects of growth factors as well as to investigate how signals delivered to a specific cell type modulate heterotypic cellular interactions.

Original languageEnglish
Pages (from-to)5936-5944
Number of pages9
JournalBiomaterials
Volume31
Issue number23
DOIs
Publication statusPublished - Aug 2010
Externally publishedYes

Fingerprint

Hepatocyte Growth Factor
Hepatocytes
Intercellular Signaling Peptides and Proteins
Alcohols
Collagen
Apoptosis
Wounds and Injuries
Cell death
Microarrays
Liver
Ethanol
Bone Morphogenetic Protein 7
In Situ Nick-End Labeling
Cadherins
Coculture Techniques
Glass
In Vitro Techniques
Rats
Cultured Cells
Assays

Keywords

  • Growth factor microarrays
  • Hepatocytes
  • Liver injury
  • Micropatterned cocultures
  • Protein microarrays

ASJC Scopus subject areas

  • Biomaterials
  • Bioengineering
  • Ceramics and Composites
  • Mechanics of Materials
  • Biophysics
  • Medicine(all)

Cite this

Cultivating hepatocytes on printed arrays of HGF and BMP7 to characterize protective effects of these growth factors during in vitro alcohol injury. / Jones, Caroline N.; Tuleuova, Nazgul; Lee, Ji Youn; Ramanculov, Erlan; Reddi, A. Hari; Zern, Mark A.; Revzin, Alexander.

In: Biomaterials, Vol. 31, No. 23, 08.2010, p. 5936-5944.

Research output: Contribution to journalArticle

Jones, Caroline N. ; Tuleuova, Nazgul ; Lee, Ji Youn ; Ramanculov, Erlan ; Reddi, A. Hari ; Zern, Mark A. ; Revzin, Alexander. / Cultivating hepatocytes on printed arrays of HGF and BMP7 to characterize protective effects of these growth factors during in vitro alcohol injury. In: Biomaterials. 2010 ; Vol. 31, No. 23. pp. 5936-5944.
@article{756f7c9d39344bf88f5d6082d100c6b2,
title = "Cultivating hepatocytes on printed arrays of HGF and BMP7 to characterize protective effects of these growth factors during in vitro alcohol injury",
abstract = "The goal of the present study was to investigate hepato-protective effects of growth factor (GF) arrays during alcohol injury. Hepatocyte growth factor (HGF) and bone morphogenetic protein (BMP)7 were mixed with collagen (I) and robotically printed onto standard glass slides to create arrays of 500 μm diameter spots. Primary rat hepatocytes were seeded on top of the arrays forming clusters corresponding in size to the underlying protein spots. Cell arrays were then injured in culture by exposure to 100. m. m ethanol for 48. h. Hepatocytes residing on GF spots were found to have less apoptosis then cells cultured on collagen-only spots. Least apoptosis (0.3{\%} as estimated by TUNEL assay) was observed on HGF/BMP7/collagen spots whereas most apoptosis (17.3{\%}) was seen on collagen-only arrays. Interestingly, the extent of alcohol-induced apoptosis in hepatocytes varied based on the concentration of printed GF. In addition to preventing apoptosis, printed GFs contributed to maintenance of epithelial phenotype during alcohol injury as evidenced by higher levels of E-cadherin expression in HGF-protected hepatocytes. Importantly, GF microarrays could be used to investigate heterotypic interactions in the context of liver injury. To highlight this, stellate cells - nonparenchymal liver cells involved in fibrosis - were added to hepatocytes residing on arrays of either HGF/collagen or collagen-only spots. Exposure of these cocultures to ethanol followed by RT-PCR analysis revealed that stellate cells residing alongside HGF-protected hepatocytes were significantly less activated (less fibrotic) compared to controls. Overall, our results demonstrate that GF microarray format can be used to screen anti-fibrotic and anti-apoptotic effects of growth factors as well as to investigate how signals delivered to a specific cell type modulate heterotypic cellular interactions.",
keywords = "Growth factor microarrays, Hepatocytes, Liver injury, Micropatterned cocultures, Protein microarrays",
author = "Jones, {Caroline N.} and Nazgul Tuleuova and Lee, {Ji Youn} and Erlan Ramanculov and Reddi, {A. Hari} and Zern, {Mark A.} and Alexander Revzin",
year = "2010",
month = "8",
doi = "10.1016/j.biomaterials.2010.04.006",
language = "English",
volume = "31",
pages = "5936--5944",
journal = "Biomaterials",
issn = "0142-9612",
publisher = "Elsevier",
number = "23",

}

TY - JOUR

T1 - Cultivating hepatocytes on printed arrays of HGF and BMP7 to characterize protective effects of these growth factors during in vitro alcohol injury

AU - Jones, Caroline N.

AU - Tuleuova, Nazgul

AU - Lee, Ji Youn

AU - Ramanculov, Erlan

AU - Reddi, A. Hari

AU - Zern, Mark A.

AU - Revzin, Alexander

PY - 2010/8

Y1 - 2010/8

N2 - The goal of the present study was to investigate hepato-protective effects of growth factor (GF) arrays during alcohol injury. Hepatocyte growth factor (HGF) and bone morphogenetic protein (BMP)7 were mixed with collagen (I) and robotically printed onto standard glass slides to create arrays of 500 μm diameter spots. Primary rat hepatocytes were seeded on top of the arrays forming clusters corresponding in size to the underlying protein spots. Cell arrays were then injured in culture by exposure to 100. m. m ethanol for 48. h. Hepatocytes residing on GF spots were found to have less apoptosis then cells cultured on collagen-only spots. Least apoptosis (0.3% as estimated by TUNEL assay) was observed on HGF/BMP7/collagen spots whereas most apoptosis (17.3%) was seen on collagen-only arrays. Interestingly, the extent of alcohol-induced apoptosis in hepatocytes varied based on the concentration of printed GF. In addition to preventing apoptosis, printed GFs contributed to maintenance of epithelial phenotype during alcohol injury as evidenced by higher levels of E-cadherin expression in HGF-protected hepatocytes. Importantly, GF microarrays could be used to investigate heterotypic interactions in the context of liver injury. To highlight this, stellate cells - nonparenchymal liver cells involved in fibrosis - were added to hepatocytes residing on arrays of either HGF/collagen or collagen-only spots. Exposure of these cocultures to ethanol followed by RT-PCR analysis revealed that stellate cells residing alongside HGF-protected hepatocytes were significantly less activated (less fibrotic) compared to controls. Overall, our results demonstrate that GF microarray format can be used to screen anti-fibrotic and anti-apoptotic effects of growth factors as well as to investigate how signals delivered to a specific cell type modulate heterotypic cellular interactions.

AB - The goal of the present study was to investigate hepato-protective effects of growth factor (GF) arrays during alcohol injury. Hepatocyte growth factor (HGF) and bone morphogenetic protein (BMP)7 were mixed with collagen (I) and robotically printed onto standard glass slides to create arrays of 500 μm diameter spots. Primary rat hepatocytes were seeded on top of the arrays forming clusters corresponding in size to the underlying protein spots. Cell arrays were then injured in culture by exposure to 100. m. m ethanol for 48. h. Hepatocytes residing on GF spots were found to have less apoptosis then cells cultured on collagen-only spots. Least apoptosis (0.3% as estimated by TUNEL assay) was observed on HGF/BMP7/collagen spots whereas most apoptosis (17.3%) was seen on collagen-only arrays. Interestingly, the extent of alcohol-induced apoptosis in hepatocytes varied based on the concentration of printed GF. In addition to preventing apoptosis, printed GFs contributed to maintenance of epithelial phenotype during alcohol injury as evidenced by higher levels of E-cadherin expression in HGF-protected hepatocytes. Importantly, GF microarrays could be used to investigate heterotypic interactions in the context of liver injury. To highlight this, stellate cells - nonparenchymal liver cells involved in fibrosis - were added to hepatocytes residing on arrays of either HGF/collagen or collagen-only spots. Exposure of these cocultures to ethanol followed by RT-PCR analysis revealed that stellate cells residing alongside HGF-protected hepatocytes were significantly less activated (less fibrotic) compared to controls. Overall, our results demonstrate that GF microarray format can be used to screen anti-fibrotic and anti-apoptotic effects of growth factors as well as to investigate how signals delivered to a specific cell type modulate heterotypic cellular interactions.

KW - Growth factor microarrays

KW - Hepatocytes

KW - Liver injury

KW - Micropatterned cocultures

KW - Protein microarrays

UR - http://www.scopus.com/inward/record.url?scp=77953811258&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77953811258&partnerID=8YFLogxK

U2 - 10.1016/j.biomaterials.2010.04.006

DO - 10.1016/j.biomaterials.2010.04.006

M3 - Article

VL - 31

SP - 5936

EP - 5944

JO - Biomaterials

JF - Biomaterials

SN - 0142-9612

IS - 23

ER -