De-emulsification and gravity separation of micro-emulsion produced with enhanced oil recovery chemicals flooding

Mohammad Kamal Asif Khan, Javed Akbar Khan, Habib Ullah, Hussain H. Al-Kayiem, Sonny Irawan, Muhammad Irfan, Adam Glowacz, Hui Liu, Witold Glowacz, Saifur Rahman

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

The present study investigates the effect of TiO2 nanoparticles on the stability of Enhanced Oil Recovery (EOR)-produced stable emulsion. The chemical precipitation method is used to synthesize TiO2 nanoparticles, and their properties were determined using various analytical characterization techniques such as X-ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), and Field Emission Scanning Electron Microscopy (FESEM). The effect of TiO2 nanoparticles is evaluated by measuring oil/water (o/w) separation, rag layer formation, oil droplet size, and zeta potential of the residual EOR produced emulsion. The laser scattering technique is used to determine the o/w separation. The results showed that spherical-shaped anatase phase TiO2 nanoparticles were produced with an average particle size of 122 nm. The TiO2 nanoparticles had a positive effect on o/w separation and the clarity of the separated water. The separated aqueous phases’ clarity is 75% and 45% with and without TiO2 nanoparticles, respectively. Laser scattering analysis revealed enhanced light transmission in the presence of TiO2 nanoparticles, suggesting higher o/w separation of the ASP-produced emulsion. The overall increase in the o/w separation was recorded to be 19% in the presence of TiO2 nanoparticles, indicating a decrease in the stability of ASP-produced emulsion. This decrease in the stability can be attributed to the improved coalescence’ action between the adjacent oil droplets and improved behavior of o/w interfacial film. An observable difference was found between the oil droplet size before and after the addition of TiO2 nanoparticles, where the oil droplet size increased from 3 µm to 35 µm. A similar trend of zeta potential is also noticed in the presence of TiO2 nanoparticles. Zeta potential was −13 mV to −7 mV, which is in the unstable emulsion range. Overall, the o/w separation is enhanced by introducing TiO2 nanoparticles into ASP-produced stable emulsion.

Original languageEnglish
Article number2249
JournalEnergies
Volume14
Issue number8
DOIs
Publication statusPublished - Apr 2 2021

Keywords

  • Emulsification
  • EOR flooding
  • Gravity separation
  • Laser scattering

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'De-emulsification and gravity separation of micro-emulsion produced with enhanced oil recovery chemicals flooding'. Together they form a unique fingerprint.

Cite this