Dead-core solutions to fast diffusion–reaction equation for catalyst slabs with power-law reaction kinetics and external mass transfer resistance

Piotr Skrzypacz, Alua Kadyrbek, Boris Golman, Vsevolod V. Andreev

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

This paper investigates semi-analytic approaches used to solve a two-point boundary value problem for nonlinear fast diffusion–reaction equation for catalytic slabs with external mass resistance. The kinetics considered is the power-law type having a fractional reaction exponent. The semi-analytic approach for dead-core problems with Fickian diffusion is generalized to models with non-Fickian diffusion. The dimensionless steady-state equation for mass conservation in the catalyst slab for a single n-th order chemical reaction and the non-Fickian diffusion model is derived and studied. We show that the dead zone can appear close to the pellet center under certain combinations of the following parameters: slab size, effective diffusivity, mass transfer coefficient, bulk reactant concentration, reaction order, reaction rate constant, and diffusion exponent. We also study the effects of the process parameters on the concentration profiles and length of dead zones. Analytical findings are verified by numerical simulations.

Original languageEnglish
Article number136722
JournalChemical Engineering Journal
Volume446
DOIs
Publication statusPublished - Oct 15 2022

Keywords

  • Catalytic pellet
  • Dead zone
  • Diffusion and reaction
  • Fast diffusion equation
  • Non-Fickian diffusion
  • Power-law kinetics
  • Semi-analytic solution

ASJC Scopus subject areas

  • General Chemistry
  • Environmental Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Dead-core solutions to fast diffusion–reaction equation for catalyst slabs with power-law reaction kinetics and external mass transfer resistance'. Together they form a unique fingerprint.

Cite this