TY - GEN
T1 - Design and control of an active electrical knee and ankle prosthesis
AU - Sup, Frank
AU - Varol, Huseyin Atakan
AU - Mitchell, Jason
AU - Withrow, Thomas
AU - Goldfarb, Michael
PY - 2008
Y1 - 2008
N2 - This paper presents an overview of the design and control of an electrically powered knee and ankle prosthesis. The prosthesis design incorporates two motor-driven ball screw units to drive the knee and ankle joints. A spring in parallel with the ankle motor unit is employed to decrease the power consumption and increase the torque output for a given motor size. The device's sensor package includes a custom load cell to measure the sagittal socket interface moment above the knee joint, a custom sensorized foot to measure the ground reaction force at the heel and ball of the foot, and commercial potentiometers and load cells to measure joint positions and torques. A finite-state based impedance control approach, previously developed by the authors, is used and experimental results on level treadmill walking are presented that demonstrate the potential of the device to restore normal gait. The experimental power consumption of the device projects a walking distance of 5.0 km at a speed of 2.8 km/hr with a lithium polymer battery pack.
AB - This paper presents an overview of the design and control of an electrically powered knee and ankle prosthesis. The prosthesis design incorporates two motor-driven ball screw units to drive the knee and ankle joints. A spring in parallel with the ankle motor unit is employed to decrease the power consumption and increase the torque output for a given motor size. The device's sensor package includes a custom load cell to measure the sagittal socket interface moment above the knee joint, a custom sensorized foot to measure the ground reaction force at the heel and ball of the foot, and commercial potentiometers and load cells to measure joint positions and torques. A finite-state based impedance control approach, previously developed by the authors, is used and experimental results on level treadmill walking are presented that demonstrate the potential of the device to restore normal gait. The experimental power consumption of the device projects a walking distance of 5.0 km at a speed of 2.8 km/hr with a lithium polymer battery pack.
UR - http://www.scopus.com/inward/record.url?scp=63049100904&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=63049100904&partnerID=8YFLogxK
U2 - 10.1109/BIOROB.2008.4762811
DO - 10.1109/BIOROB.2008.4762811
M3 - Conference contribution
AN - SCOPUS:63049100904
SN - 9781424428830
T3 - Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008
SP - 523
EP - 528
BT - Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008
T2 - 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008
Y2 - 19 October 2008 through 22 October 2008
ER -