Design and control of an active electrical knee and ankle prosthesis

Frank Sup, Huseyin Atakan Varol, Jason Mitchell, Thomas Withrow, Michael Goldfarb

Research output: Chapter in Book/Report/Conference proceedingConference contribution

82 Citations (Scopus)

Abstract

This paper presents an overview of the design and control of an electrically powered knee and ankle prosthesis. The prosthesis design incorporates two motor-driven ball screw units to drive the knee and ankle joints. A spring in parallel with the ankle motor unit is employed to decrease the power consumption and increase the torque output for a given motor size. The device's sensor package includes a custom load cell to measure the sagittal socket interface moment above the knee joint, a custom sensorized foot to measure the ground reaction force at the heel and ball of the foot, and commercial potentiometers and load cells to measure joint positions and torques. A finite-state based impedance control approach, previously developed by the authors, is used and experimental results on level treadmill walking are presented that demonstrate the potential of the device to restore normal gait. The experimental power consumption of the device projects a walking distance of 5.0 km at a speed of 2.8 km/hr with a lithium polymer battery pack.

Original languageEnglish
Title of host publicationProceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008
Pages523-528
Number of pages6
DOIs
Publication statusPublished - 2008
Event2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008 - Scottsdale, AZ, United States
Duration: Oct 19 2008Oct 22 2008

Publication series

NameProceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008

Other

Other2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008
CountryUnited States
CityScottsdale, AZ
Period10/19/0810/22/08

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Design and control of an active electrical knee and ankle prosthesis'. Together they form a unique fingerprint.

Cite this