Diagnostic Potential of Imaging Flow Cytometry

Minh Doan, Ivan Vorobyev, Paul Rees, Andrew Filby, Olaf Wolkenhauer, Anne E. Goldfeld, Judy Lieberman, Natalie Barteneva, Anne E. Carpenter, Holger Hennig

Research output: Contribution to journalShort survey

14 Citations (Scopus)

Abstract

Imaging flow cytometry (IFC) captures multichannel images of hundreds of thousands of single cells within minutes. IFC is seeing a paradigm shift from low- to high-information-content analysis, driven partly by deep learning algorithms. We predict a wealth of applications with potential translation into clinical practice.

Original languageEnglish
Pages (from-to)649-652
Number of pages4
JournalTrends in Biotechnology
Volume36
Issue number7
DOIs
Publication statusPublished - Jul 1 2018

Fingerprint

Flow cytometry
Diagnostic Imaging
Flow Cytometry
Imaging techniques
Learning algorithms
Learning
Deep learning

Keywords

  • deep learning
  • disease diagnostics
  • high-content analysis
  • imaging flow cytometry
  • translational medicine

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering

Cite this

Doan, M., Vorobyev, I., Rees, P., Filby, A., Wolkenhauer, O., Goldfeld, A. E., ... Hennig, H. (2018). Diagnostic Potential of Imaging Flow Cytometry. Trends in Biotechnology, 36(7), 649-652. https://doi.org/10.1016/j.tibtech.2017.12.008

Diagnostic Potential of Imaging Flow Cytometry. / Doan, Minh; Vorobyev, Ivan; Rees, Paul; Filby, Andrew; Wolkenhauer, Olaf; Goldfeld, Anne E.; Lieberman, Judy; Barteneva, Natalie; Carpenter, Anne E.; Hennig, Holger.

In: Trends in Biotechnology, Vol. 36, No. 7, 01.07.2018, p. 649-652.

Research output: Contribution to journalShort survey

Doan, M, Vorobyev, I, Rees, P, Filby, A, Wolkenhauer, O, Goldfeld, AE, Lieberman, J, Barteneva, N, Carpenter, AE & Hennig, H 2018, 'Diagnostic Potential of Imaging Flow Cytometry', Trends in Biotechnology, vol. 36, no. 7, pp. 649-652. https://doi.org/10.1016/j.tibtech.2017.12.008
Doan M, Vorobyev I, Rees P, Filby A, Wolkenhauer O, Goldfeld AE et al. Diagnostic Potential of Imaging Flow Cytometry. Trends in Biotechnology. 2018 Jul 1;36(7):649-652. https://doi.org/10.1016/j.tibtech.2017.12.008
Doan, Minh ; Vorobyev, Ivan ; Rees, Paul ; Filby, Andrew ; Wolkenhauer, Olaf ; Goldfeld, Anne E. ; Lieberman, Judy ; Barteneva, Natalie ; Carpenter, Anne E. ; Hennig, Holger. / Diagnostic Potential of Imaging Flow Cytometry. In: Trends in Biotechnology. 2018 ; Vol. 36, No. 7. pp. 649-652.
@article{133f5347cdcc4d72a3ac519b186fdf23,
title = "Diagnostic Potential of Imaging Flow Cytometry",
abstract = "Imaging flow cytometry (IFC) captures multichannel images of hundreds of thousands of single cells within minutes. IFC is seeing a paradigm shift from low- to high-information-content analysis, driven partly by deep learning algorithms. We predict a wealth of applications with potential translation into clinical practice.",
keywords = "deep learning, disease diagnostics, high-content analysis, imaging flow cytometry, translational medicine",
author = "Minh Doan and Ivan Vorobyev and Paul Rees and Andrew Filby and Olaf Wolkenhauer and Goldfeld, {Anne E.} and Judy Lieberman and Natalie Barteneva and Carpenter, {Anne E.} and Holger Hennig",
year = "2018",
month = "7",
day = "1",
doi = "10.1016/j.tibtech.2017.12.008",
language = "English",
volume = "36",
pages = "649--652",
journal = "Trends in Biotechnology",
issn = "0167-7799",
publisher = "Elsevier",
number = "7",

}

TY - JOUR

T1 - Diagnostic Potential of Imaging Flow Cytometry

AU - Doan, Minh

AU - Vorobyev, Ivan

AU - Rees, Paul

AU - Filby, Andrew

AU - Wolkenhauer, Olaf

AU - Goldfeld, Anne E.

AU - Lieberman, Judy

AU - Barteneva, Natalie

AU - Carpenter, Anne E.

AU - Hennig, Holger

PY - 2018/7/1

Y1 - 2018/7/1

N2 - Imaging flow cytometry (IFC) captures multichannel images of hundreds of thousands of single cells within minutes. IFC is seeing a paradigm shift from low- to high-information-content analysis, driven partly by deep learning algorithms. We predict a wealth of applications with potential translation into clinical practice.

AB - Imaging flow cytometry (IFC) captures multichannel images of hundreds of thousands of single cells within minutes. IFC is seeing a paradigm shift from low- to high-information-content analysis, driven partly by deep learning algorithms. We predict a wealth of applications with potential translation into clinical practice.

KW - deep learning

KW - disease diagnostics

KW - high-content analysis

KW - imaging flow cytometry

KW - translational medicine

UR - http://www.scopus.com/inward/record.url?scp=85041216958&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85041216958&partnerID=8YFLogxK

U2 - 10.1016/j.tibtech.2017.12.008

DO - 10.1016/j.tibtech.2017.12.008

M3 - Short survey

AN - SCOPUS:85041216958

VL - 36

SP - 649

EP - 652

JO - Trends in Biotechnology

JF - Trends in Biotechnology

SN - 0167-7799

IS - 7

ER -