Discrete symmetry and stability in hamiltonian dynamics

Tassos Bountis, George Chechin, Vladimir Sakhnenko

Research output: Contribution to journalReview article

6 Citations (Scopus)

Abstract

In the present tutorial we address a problem with a long history, which remains of great interest to date due to its many important applications: It concerns the existence and stability of periodic and quasiperiodic orbits in N-degree of freedom Hamiltonian systems and their connection with discrete symmetries. Of primary importance in our study is what we call nonlinear normal modes (NNMs), i.e. periodic solutions which represent continuations of the system's linear normal modes in the nonlinear regime. We examine questions concerning the existence of such solutions and discuss different methods for constructing them and studying their stability under fixed and periodic boundary conditions. In the periodic case, we find it particularly useful to approach the problem through the discrete symmetries of many models, employing group theoretical concepts to identify a special type of NNMs which we call one-dimensional "bushes". We then describe how to use linear combinations of s < 2 such NNMs to construct s-dimensional bushes of quasiperiodic orbits, for a wide variety of Hamiltonian systems including particle chains, a square molecule and octahedral crystals in 1, 2 and 3 dimensions. Next, we exploit the symmetries of the linearized equations of motion about these bushes to demonstrate how they may be simplified to study the destabilization of these orbits, as a result of their interaction with NNMs not belonging to the same bush. Applying this theory to the famous Fermi Pasta Ulam (FPU) chain, we review a number of interesting results concerning the stability of NNMs and higher-dimensional bushes, which have appeared in the recent literature. We then turn to a newly developed approach to the analytical and numerical construction of quasiperiodic orbits, which does not depend on the symmetries or boundary conditions of our system. Using this approach, we demonstrate that the well-known "paradox" of FPU recurrences may in fact be explained in terms of the exponential localization of the energies Eq of NNM's being excited at the low part of the frequency spectrum, i.e. q = 1, 2, 3, .... These results indicate that it is the stability of these low-dimensional compact manifolds called q-tori, that is related to the persistence or FPU recurrences at low energies. Finally, we discuss a novel approach to the stability of orbits of conservative systems, expressed by a spectrum of indices called GALIk, k = 2, ..., 2N, by means of which one can determine accurately and efficiently the destabilization of q-tori, leading, after very long times, to the breakdown of recurrences and, ultimately, to the equipartition of energy, at high enough values of the total energy E.

Original languageEnglish
Pages (from-to)1539-1582
Number of pages44
JournalInternational Journal of Bifurcation and Chaos
Volume21
Issue number6
DOIs
Publication statusPublished - Jun 2011
Externally publishedYes

Fingerprint

Hamiltonians
Hamiltonian Dynamics
Normal Modes
Orbits
Symmetry
Orbit
Recurrence
Energy
Hamiltonian Systems
Boundary conditions
Torus
Equipartition
Conservative System
Due Dates
Frequency Spectrum
Equations of motion
Paradox
Periodic Boundary Conditions
Compact Manifold
Persistence

Keywords

  • chaos
  • Discrete symmetries
  • Hamiltonian systems
  • nonlinear normal modes
  • periodic and quasiperiodic orbits
  • stability

ASJC Scopus subject areas

  • Applied Mathematics
  • General
  • Engineering(all)
  • Modelling and Simulation

Cite this

Discrete symmetry and stability in hamiltonian dynamics. / Bountis, Tassos; Chechin, George; Sakhnenko, Vladimir.

In: International Journal of Bifurcation and Chaos, Vol. 21, No. 6, 06.2011, p. 1539-1582.

Research output: Contribution to journalReview article

Bountis, Tassos ; Chechin, George ; Sakhnenko, Vladimir. / Discrete symmetry and stability in hamiltonian dynamics. In: International Journal of Bifurcation and Chaos. 2011 ; Vol. 21, No. 6. pp. 1539-1582.
@article{48efcdd062224ca5bda5a3e18732b0bf,
title = "Discrete symmetry and stability in hamiltonian dynamics",
abstract = "In the present tutorial we address a problem with a long history, which remains of great interest to date due to its many important applications: It concerns the existence and stability of periodic and quasiperiodic orbits in N-degree of freedom Hamiltonian systems and their connection with discrete symmetries. Of primary importance in our study is what we call nonlinear normal modes (NNMs), i.e. periodic solutions which represent continuations of the system's linear normal modes in the nonlinear regime. We examine questions concerning the existence of such solutions and discuss different methods for constructing them and studying their stability under fixed and periodic boundary conditions. In the periodic case, we find it particularly useful to approach the problem through the discrete symmetries of many models, employing group theoretical concepts to identify a special type of NNMs which we call one-dimensional {"}bushes{"}. We then describe how to use linear combinations of s < 2 such NNMs to construct s-dimensional bushes of quasiperiodic orbits, for a wide variety of Hamiltonian systems including particle chains, a square molecule and octahedral crystals in 1, 2 and 3 dimensions. Next, we exploit the symmetries of the linearized equations of motion about these bushes to demonstrate how they may be simplified to study the destabilization of these orbits, as a result of their interaction with NNMs not belonging to the same bush. Applying this theory to the famous Fermi Pasta Ulam (FPU) chain, we review a number of interesting results concerning the stability of NNMs and higher-dimensional bushes, which have appeared in the recent literature. We then turn to a newly developed approach to the analytical and numerical construction of quasiperiodic orbits, which does not depend on the symmetries or boundary conditions of our system. Using this approach, we demonstrate that the well-known {"}paradox{"} of FPU recurrences may in fact be explained in terms of the exponential localization of the energies Eq of NNM's being excited at the low part of the frequency spectrum, i.e. q = 1, 2, 3, .... These results indicate that it is the stability of these low-dimensional compact manifolds called q-tori, that is related to the persistence or FPU recurrences at low energies. Finally, we discuss a novel approach to the stability of orbits of conservative systems, expressed by a spectrum of indices called GALIk, k = 2, ..., 2N, by means of which one can determine accurately and efficiently the destabilization of q-tori, leading, after very long times, to the breakdown of recurrences and, ultimately, to the equipartition of energy, at high enough values of the total energy E.",
keywords = "chaos, Discrete symmetries, Hamiltonian systems, nonlinear normal modes, periodic and quasiperiodic orbits, stability",
author = "Tassos Bountis and George Chechin and Vladimir Sakhnenko",
year = "2011",
month = "6",
doi = "10.1142/S0218127411029276",
language = "English",
volume = "21",
pages = "1539--1582",
journal = "International Journal of Bifurcation and Chaos in Applied Sciences and Engineering",
issn = "0218-1274",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "6",

}

TY - JOUR

T1 - Discrete symmetry and stability in hamiltonian dynamics

AU - Bountis, Tassos

AU - Chechin, George

AU - Sakhnenko, Vladimir

PY - 2011/6

Y1 - 2011/6

N2 - In the present tutorial we address a problem with a long history, which remains of great interest to date due to its many important applications: It concerns the existence and stability of periodic and quasiperiodic orbits in N-degree of freedom Hamiltonian systems and their connection with discrete symmetries. Of primary importance in our study is what we call nonlinear normal modes (NNMs), i.e. periodic solutions which represent continuations of the system's linear normal modes in the nonlinear regime. We examine questions concerning the existence of such solutions and discuss different methods for constructing them and studying their stability under fixed and periodic boundary conditions. In the periodic case, we find it particularly useful to approach the problem through the discrete symmetries of many models, employing group theoretical concepts to identify a special type of NNMs which we call one-dimensional "bushes". We then describe how to use linear combinations of s < 2 such NNMs to construct s-dimensional bushes of quasiperiodic orbits, for a wide variety of Hamiltonian systems including particle chains, a square molecule and octahedral crystals in 1, 2 and 3 dimensions. Next, we exploit the symmetries of the linearized equations of motion about these bushes to demonstrate how they may be simplified to study the destabilization of these orbits, as a result of their interaction with NNMs not belonging to the same bush. Applying this theory to the famous Fermi Pasta Ulam (FPU) chain, we review a number of interesting results concerning the stability of NNMs and higher-dimensional bushes, which have appeared in the recent literature. We then turn to a newly developed approach to the analytical and numerical construction of quasiperiodic orbits, which does not depend on the symmetries or boundary conditions of our system. Using this approach, we demonstrate that the well-known "paradox" of FPU recurrences may in fact be explained in terms of the exponential localization of the energies Eq of NNM's being excited at the low part of the frequency spectrum, i.e. q = 1, 2, 3, .... These results indicate that it is the stability of these low-dimensional compact manifolds called q-tori, that is related to the persistence or FPU recurrences at low energies. Finally, we discuss a novel approach to the stability of orbits of conservative systems, expressed by a spectrum of indices called GALIk, k = 2, ..., 2N, by means of which one can determine accurately and efficiently the destabilization of q-tori, leading, after very long times, to the breakdown of recurrences and, ultimately, to the equipartition of energy, at high enough values of the total energy E.

AB - In the present tutorial we address a problem with a long history, which remains of great interest to date due to its many important applications: It concerns the existence and stability of periodic and quasiperiodic orbits in N-degree of freedom Hamiltonian systems and their connection with discrete symmetries. Of primary importance in our study is what we call nonlinear normal modes (NNMs), i.e. periodic solutions which represent continuations of the system's linear normal modes in the nonlinear regime. We examine questions concerning the existence of such solutions and discuss different methods for constructing them and studying their stability under fixed and periodic boundary conditions. In the periodic case, we find it particularly useful to approach the problem through the discrete symmetries of many models, employing group theoretical concepts to identify a special type of NNMs which we call one-dimensional "bushes". We then describe how to use linear combinations of s < 2 such NNMs to construct s-dimensional bushes of quasiperiodic orbits, for a wide variety of Hamiltonian systems including particle chains, a square molecule and octahedral crystals in 1, 2 and 3 dimensions. Next, we exploit the symmetries of the linearized equations of motion about these bushes to demonstrate how they may be simplified to study the destabilization of these orbits, as a result of their interaction with NNMs not belonging to the same bush. Applying this theory to the famous Fermi Pasta Ulam (FPU) chain, we review a number of interesting results concerning the stability of NNMs and higher-dimensional bushes, which have appeared in the recent literature. We then turn to a newly developed approach to the analytical and numerical construction of quasiperiodic orbits, which does not depend on the symmetries or boundary conditions of our system. Using this approach, we demonstrate that the well-known "paradox" of FPU recurrences may in fact be explained in terms of the exponential localization of the energies Eq of NNM's being excited at the low part of the frequency spectrum, i.e. q = 1, 2, 3, .... These results indicate that it is the stability of these low-dimensional compact manifolds called q-tori, that is related to the persistence or FPU recurrences at low energies. Finally, we discuss a novel approach to the stability of orbits of conservative systems, expressed by a spectrum of indices called GALIk, k = 2, ..., 2N, by means of which one can determine accurately and efficiently the destabilization of q-tori, leading, after very long times, to the breakdown of recurrences and, ultimately, to the equipartition of energy, at high enough values of the total energy E.

KW - chaos

KW - Discrete symmetries

KW - Hamiltonian systems

KW - nonlinear normal modes

KW - periodic and quasiperiodic orbits

KW - stability

UR - http://www.scopus.com/inward/record.url?scp=80052098245&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80052098245&partnerID=8YFLogxK

U2 - 10.1142/S0218127411029276

DO - 10.1142/S0218127411029276

M3 - Review article

VL - 21

SP - 1539

EP - 1582

JO - International Journal of Bifurcation and Chaos in Applied Sciences and Engineering

JF - International Journal of Bifurcation and Chaos in Applied Sciences and Engineering

SN - 0218-1274

IS - 6

ER -