Distributed connectivity restoration in Underwater Acoustic Sensor Networks via depth adjustment

Erkay Uzun, Fatih Senel, Kemal Akkaya, Adnan Yazici

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Citations (Scopus)

Abstract

In most applications of Underwater Acoustic Sensor Networks, network connectivity is required for data exchange, data aggregation and relaying the data to a surface station. However, such connectivity can be lost due to failure of some sensor nodes which creates disruptions to the network operations. In this paper, we present two algorithms, namely BMR and DURA, which can detect network partitioning due to such node failures and re-establish network connectivity through controlled depth adjustment of nodes in a distributed manner. The idea is to first identify whether the failure of each node will cause partitioning or not based on localized information. If partitioning is to occur as a result of the possible failure of a particular node, both BMR and DURA designates backup nodes to handle the recovery in the future. While DURA aims to localize the recovery process and minimize the movement overhead on the nodes, BMR strives to reduce the recovery completion time at the expense of increased movement overhead by employing a two-phase block movement. The performance of the proposed approaches is validated through extensive simulations. The results indicated that DURA can provide energy savings as much as a centralized exhaustive approach while BMR provided the fastest recovery time.

Original languageEnglish
Title of host publication2015 IEEE International Conference on Communications, ICC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6357-6362
Number of pages6
ISBN (Electronic)9781467364324
DOIs
Publication statusPublished - Sept 9 2015
EventIEEE International Conference on Communications, ICC 2015 - London, United Kingdom
Duration: Jun 8 2015Jun 12 2015

Publication series

NameIEEE International Conference on Communications
Volume2015-September
ISSN (Print)1550-3607

Other

OtherIEEE International Conference on Communications, ICC 2015
Country/TerritoryUnited Kingdom
CityLondon
Period6/8/156/12/15

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Distributed connectivity restoration in Underwater Acoustic Sensor Networks via depth adjustment'. Together they form a unique fingerprint.

Cite this