Abstract
The main photodegradation mechanisms of pyrromethene 567 are discussed, and the quantum efficiency of self-sensitized photo-oxidation, the predominant mechanism, was found to be 0.5% in aerated benzene-d6. Other degradation mechanisms do exist, but the high photostability of the dye in solid host media possibly implies that they are all diffusion controlled. Solid-state dye lasers based on pyrromethene 567 doped poly(methyl methacrylate) with an added singlet oxygen quencher 1,4-diazobicyclo [2,2,2] octane (DABCO) showed a lifetime of 550,000 pulses. A triplet quencher, perylene, provided no improvement. Singlet oxygen quenching is effective in the solid-state whereas triplet quenching is not, presumably due to the slower diffusion rate of dye molecules compared with oxygen.
Original language | English |
---|---|
Pages (from-to) | 145-153 |
Number of pages | 9 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 3929 |
DOIs | |
Publication status | Published - 2000 |
Externally published | Yes |
Event | Solid State Lasers IX - San Jose, CA, USA Duration: Jan 25 2000 → Jan 26 2000 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering