Dynamics and gravitational wave signature of collapsar formation

C. D. Ott, C. Reisswig, E. Schnetter, E. O'Connor, U. Sperhake, F. Löffler, P. Diener, E. Abdikamalov, I. Hawke, A. Burrows

Research output: Contribution to journalArticle

63 Citations (Scopus)

Abstract

We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation.

Original languageEnglish
Article number161103
JournalPhysical Review Letters
Volume106
Issue number16
DOIs
Publication statusPublished - Apr 22 2011
Externally publishedYes

Fingerprint

gravitational waves
signatures
stellar evolution
gamma ray bursts
equations of state
simulation
curvature

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Ott, C. D., Reisswig, C., Schnetter, E., O'Connor, E., Sperhake, U., Löffler, F., ... Burrows, A. (2011). Dynamics and gravitational wave signature of collapsar formation. Physical Review Letters, 106(16), [161103]. https://doi.org/10.1103/PhysRevLett.106.161103

Dynamics and gravitational wave signature of collapsar formation. / Ott, C. D.; Reisswig, C.; Schnetter, E.; O'Connor, E.; Sperhake, U.; Löffler, F.; Diener, P.; Abdikamalov, E.; Hawke, I.; Burrows, A.

In: Physical Review Letters, Vol. 106, No. 16, 161103, 22.04.2011.

Research output: Contribution to journalArticle

Ott, CD, Reisswig, C, Schnetter, E, O'Connor, E, Sperhake, U, Löffler, F, Diener, P, Abdikamalov, E, Hawke, I & Burrows, A 2011, 'Dynamics and gravitational wave signature of collapsar formation', Physical Review Letters, vol. 106, no. 16, 161103. https://doi.org/10.1103/PhysRevLett.106.161103
Ott CD, Reisswig C, Schnetter E, O'Connor E, Sperhake U, Löffler F et al. Dynamics and gravitational wave signature of collapsar formation. Physical Review Letters. 2011 Apr 22;106(16). 161103. https://doi.org/10.1103/PhysRevLett.106.161103
Ott, C. D. ; Reisswig, C. ; Schnetter, E. ; O'Connor, E. ; Sperhake, U. ; Löffler, F. ; Diener, P. ; Abdikamalov, E. ; Hawke, I. ; Burrows, A. / Dynamics and gravitational wave signature of collapsar formation. In: Physical Review Letters. 2011 ; Vol. 106, No. 16.
@article{aa6f36bc90d846a19432e2652c07f08e,
title = "Dynamics and gravitational wave signature of collapsar formation",
abstract = "We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation.",
author = "Ott, {C. D.} and C. Reisswig and E. Schnetter and E. O'Connor and U. Sperhake and F. L{\"o}ffler and P. Diener and E. Abdikamalov and I. Hawke and A. Burrows",
year = "2011",
month = "4",
day = "22",
doi = "10.1103/PhysRevLett.106.161103",
language = "English",
volume = "106",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "16",

}

TY - JOUR

T1 - Dynamics and gravitational wave signature of collapsar formation

AU - Ott, C. D.

AU - Reisswig, C.

AU - Schnetter, E.

AU - O'Connor, E.

AU - Sperhake, U.

AU - Löffler, F.

AU - Diener, P.

AU - Abdikamalov, E.

AU - Hawke, I.

AU - Burrows, A.

PY - 2011/4/22

Y1 - 2011/4/22

N2 - We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation.

AB - We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation.

UR - http://www.scopus.com/inward/record.url?scp=79960637092&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79960637092&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.106.161103

DO - 10.1103/PhysRevLett.106.161103

M3 - Article

VL - 106

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 16

M1 - 161103

ER -