TY - JOUR
T1 - Effect of the lattice structures on mechanical characterisation of additively manufactured Ti-6Al-4V for biomedical application
AU - Zhumabekova, Anel
AU - Perveen, Asma
AU - Talamona, Didier
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2024
Y1 - 2024
N2 - In the last decades, most investigations in titanium bone implantology have applied lattice structures instead of dense materials to reduce weight and obtain the mechanical properties similar to human bones. However, there is still a need for more research on the optimal design of lattice titanium implants with proper mechanical behaviour and heat treatment investigations, which directly affects the mechanical, microstructural, and morphological characteristics. The present study aims to examine the effect of densities and unit cell sizes for Selective Laser Melting (SLM)-printed lattice structures created by MSLattice. TPMS lattice structures including Diamond, Gyroid, and Primitive generated by MSLattice software were subsequently printed using Ti-6Al-4 V ELI. Tensile testing of DTi (dense) produced an ultimate tensile strength of 1241.58 ± 23.92 MPa and a Yield strength of 1151 ± 8.6 MPa, while its compression test resulted in an ultimate value of 1424.8 ± 20.13 MPa. The increase in density from 20% to 30% has resulted in a doubling of some mechanical properties. The lattice structure of the Gyroid at 30% density presented a UCS value of 143.96 ± 0.89 MPa as the highest, while that of the Diamond at 20% density presented the lowest with 46.89 ± 0.43 MPa. The values for energy absorption and plateau stress follow in a precise sequence.
AB - In the last decades, most investigations in titanium bone implantology have applied lattice structures instead of dense materials to reduce weight and obtain the mechanical properties similar to human bones. However, there is still a need for more research on the optimal design of lattice titanium implants with proper mechanical behaviour and heat treatment investigations, which directly affects the mechanical, microstructural, and morphological characteristics. The present study aims to examine the effect of densities and unit cell sizes for Selective Laser Melting (SLM)-printed lattice structures created by MSLattice. TPMS lattice structures including Diamond, Gyroid, and Primitive generated by MSLattice software were subsequently printed using Ti-6Al-4 V ELI. Tensile testing of DTi (dense) produced an ultimate tensile strength of 1241.58 ± 23.92 MPa and a Yield strength of 1151 ± 8.6 MPa, while its compression test resulted in an ultimate value of 1424.8 ± 20.13 MPa. The increase in density from 20% to 30% has resulted in a doubling of some mechanical properties. The lattice structure of the Gyroid at 30% density presented a UCS value of 143.96 ± 0.89 MPa as the highest, while that of the Diamond at 20% density presented the lowest with 46.89 ± 0.43 MPa. The values for energy absorption and plateau stress follow in a precise sequence.
KW - Additive manufacturing
KW - lattice structures
KW - SLM, Ti-6Al-4V, TPMS
UR - http://www.scopus.com/inward/record.url?scp=85198636067&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85198636067&partnerID=8YFLogxK
U2 - 10.1080/2374068X.2024.2379088
DO - 10.1080/2374068X.2024.2379088
M3 - Article
AN - SCOPUS:85198636067
SN - 2374-068X
JO - Advances in Materials and Processing Technologies
JF - Advances in Materials and Processing Technologies
ER -