Abstract
In this work, the rational design of O′3-type Na[Ni2/3−xCoxSb1/3]O2, a solid solution of Na[Ni2/3Sb1/3]O2–Na[Co2/3Sb1/3]O2, is introduced. Because of the difficulty of the Co3+/2+ redox reaction, the electronic structures of Na[Ni2/3−xCoxSb1/3]O2 compounds are engineered to build electroconducting networks in the oxide matrix through electrochemical oxidation of Co2+ to Co3+, after which the formed Co3+ does not participate in the electrochemical reaction but improves the electrical conductivity in the structure. Density functional theory calculations reveal a reduced bandgap energy after the formation of Co3+ during desodiation of Na1−y[Ni2/3−xCoxSb1/3]O2. Using the oxidized Co3+ species while improving the electrical conductivity, the Na[Ni2/3−xCoxSb1/3]O2 (x = 1/6) electrode exhibits excellent cyclability for 1000 cycles with ≈72.5% capacity retention at 2C (400 mA g−1) and activity even at 50C (10 A g−1) in Na cells. Operando X-ray diffraction and ex situ X-ray absorption near-edge structure investigations reveal suppressed lattice variations upon charge and discharge compared with those of Na[Ni2/3Sb1/3]O2 achieved by the presence of the electrochemical-driven Co3+ in the structure. These findings offer a new strategy for the development of cathode materials for sodium-ion batteries, providing important insight into their structural transformations and the electronic nature of advanced cathode materials.
Original language | English |
---|---|
Article number | 2003399 |
Journal | Advanced Energy Materials |
Volume | 11 |
Issue number | 14 |
DOIs | |
Publication status | Published - Apr 15 2021 |
Keywords
- batteries
- cathodes
- electronic structure
- layered
- sodium
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- General Materials Science