Energy localization on q -tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences

H. Christodoulidi, C. Efthymiopoulos, T. Bountis

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

We focus on two approaches that have been proposed in recent years for the explanation of the so-called Fermi-Pasta-Ulam (FPU) paradox, i.e., the persistence of energy localization in the "low- q " Fourier modes of Fermi-Pasta-Ulam nonlinear lattices, preventing equipartition among all modes at low energies. In the first approach, a low-frequency fraction of the spectrum is initially excited leading to the formation of "natural packets" exhibiting exponential stability, while in the second, emphasis is placed on the existence of " q breathers," i.e., periodic continuations of the linear modes of the lattice, which are exponentially localized in Fourier space. Following ideas of the latter, we introduce in this paper the concept of " q -tori" representing exponentially localized solutions on low-dimensional tori and use their stability properties to reconcile these two approaches and provide a more complete explanation of the FPU paradox.

Original languageEnglish
Article number016210
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume81
Issue number1
DOIs
Publication statusPublished - Jan 19 2010

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Energy localization on q -tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences'. Together they form a unique fingerprint.

Cite this