Enhanced Chemical Stability of Tetramethylammonium Head Groups via Deep Eutectic Solvent: A Computational Study: Molecules

Research output: Contribution to journalArticlepeer-review

Abstract

The chemical stability of tetramethylammonium (TMA) head groups, both with and without the presence of a choline chloride and ethylene glycol-based deep eutectic solvent (DES), was studied using Density Functional Theory (DFT) calculations and ab initio Molecular Dynamics (MD) simulations. DFT calculations of transition state energetics (ΔEreaction, ΔGreaction, ΔEactivation, and ΔGactivation) for key degradation mechanisms, ylide formation (YF) and nucleophilic substitution (SN2), suggested that the presence of DES enhances the stability of the TMA head groups compared to systems without DES. Ab initio MD simulations across hydration levels (HLs) 1 to 5 indicated that without DES, YF dominates at lower HLs, while SN2 does not occur. In contrast, both mechanisms are suppressed in the presence of DES. Temperature also plays a role: without DES, YF dominates at 298 K, while SN2 becomes prominent at 320 K and 350 K. With DES, both degradation mechanisms are inhibited. These findings suggest DES could improve the chemical stability of TMA head groups in anion exchange membranes.
Original languageEnglish
Article number4869
Number of pages14
JournalMolecules
Volume29
DOIs
Publication statusPublished - 2024

Keywords

  • tetramethylammonium head groups
  • deep eutectic solvent
  • anion exchange membranes
  • chemical stability
  • density functional theory
  • molecular dynamics
  • ylide formation
  • nucleophilic substitution

Fingerprint

Dive into the research topics of 'Enhanced Chemical Stability of Tetramethylammonium Head Groups via Deep Eutectic Solvent: A Computational Study: Molecules'. Together they form a unique fingerprint.

Cite this