Enhancing Mechanical Properties of Expansive Soil Through BOF Slag Stabilization: A Sustainable Alternative to Conventional Methods

Arailym Mustafayeva, Sung Moon, Alfrendo Satyanaga, Jong Kim

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

This study investigates the stabilization of expansive soil using basic oxygen furnace (BOF)
slag, an eco-friendly steel by-product, as an alternative to conventional stabilizers like ordinary
Portland cement. By evaluating varying concentrations of BOF slag and lime as an activator, the research aims to improve the soil’s mechanical properties, addressing issues like low bearing capacity and high shrink–swell potential. Bentonite clay was treated with different BOF slag ratios (10%, 20%, and 30%) and activated with lime (1%, 3%, and 5%). After mixing and compaction, samples were cured and tested for unconfined compressive strength (UCS), shear wave velocity (BE), and free swell. Microscopic analyses (SEM) provided insight into structural changes post-stabilization, revealing improved properties with increased BOF and lime concentrations. Notably, stabilization with 30% BOF slag and 5% lime achieves a compressive strength of 810 kPa, meeting the minimum subgrade soil stabilization requirement (700 kPa) set by the Federal Highway Administration. This research underscores the potential of BOF slag as a sustainable and practical material for bentonite clay stabilization, offering a promising solution for enhancing soil properties while contributing to environmental sustainability through industrial by-product repurposing.
Original languageEnglish
JournalMinerals
Publication statusPublished - 2024

Keywords

  • BOF slag
  • expansive soil
  • bentonite clay
  • lime
  • soil stabilization
  • bender element
  • unconfined compressive strength

Fingerprint

Dive into the research topics of 'Enhancing Mechanical Properties of Expansive Soil Through BOF Slag Stabilization: A Sustainable Alternative to Conventional Methods'. Together they form a unique fingerprint.

Cite this