TY - JOUR
T1 - Entropic analysis of the localization–delocalization transition in a one-dimensional correlated lattice
AU - Farzadian, O.
AU - Oikonomou, T.
AU - Good, M. R.R.
AU - Niry, M. D.
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - In this work, we apply entropic analysis to investigate and quantify the localization–delocalization transition of acoustic waves propagating in a one-dimensional binary chain. The wave propagation depends on the elasticity distribution in the chain. For distributions exhibiting long-range correlations, corresponding to scaling exponent values α∈(1,2), we detect the critical value of αc, which separates the localization from the delocalization bands.
AB - In this work, we apply entropic analysis to investigate and quantify the localization–delocalization transition of acoustic waves propagating in a one-dimensional binary chain. The wave propagation depends on the elasticity distribution in the chain. For distributions exhibiting long-range correlations, corresponding to scaling exponent values α∈(1,2), we detect the critical value of αc, which separates the localization from the delocalization bands.
KW - Correlated sequence
KW - Disorder systems
KW - Entropy
KW - Localization–delocalization transition
KW - Random matrix theory
UR - http://www.scopus.com/inward/record.url?scp=85075532529&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075532529&partnerID=8YFLogxK
U2 - 10.1016/j.physa.2019.123350
DO - 10.1016/j.physa.2019.123350
M3 - Article
AN - SCOPUS:85075532529
SN - 0378-4371
VL - 545
JO - Physica A: Statistical Mechanics and its Applications
JF - Physica A: Statistical Mechanics and its Applications
M1 - 123350
ER -