Evaluating the validity of an automated device for asthma monitoring for adolescents

Correlational design

Hyekyun Rhee, Michael J. Belyea, Mark Sterling, Mark F. Bocko

    Research output: Contribution to journalArticle

    7 Citations (Scopus)

    Abstract

    Background: Symptom monitoring is a cornerstone of asthma self-management. Conventional methods of symptom monitoring have fallen short in producing objective data and eliciting patients' consistent adherence, particularly in teen patients. We have recently developed an Automated Device for Asthma Monitoring (ADAM) using a consumer mobile device as a platform to facilitate continuous and objective symptom monitoring in adolescents in vivo. Objective: The objectives of the study were to evaluate the validity of the device using spirometer data, fractional exhaled nitric oxide (FeNO), existing measures of asthma symptoms/control and health care utilization data, and to examine the sensitivity and specificity of the device in discriminating asthma cases from nonasthma cases. Methods: A total of 84 teens (42 teens with a current asthma diagnosis; 42 without asthma) aged between 13 and 17 years participated in the study. All participants used ADAM for 7 consecutive days during which participants with asthma completed an asthma diary two times a day. ADAM recorded the frequency of coughing for 24 hours throughout the 7-day trial. Pearson correlation and multiple regression were used to examine the relationships between ADAM data and asthma control, quality of life, and health care utilization at the time of the 7-day trial and 3 months later. A receiver operating characteristic (ROC) curve analysis was conducted to examine sensitivity and specificity based on the area under the curve (AUC) as an indicator of the device's capacity to discriminate between asthma versus nonasthma cases. Results: ADAM data (cough counts) were negatively associated with forced expiratory volume in first second of expiration (FEV1) (r=-.26, P=.05), forced vital capacity (FVC) (r=-.31, P=.02), and overall asthma control (r=-.41, P=.009) and positively associated with daily activity limitation (r=.46, P=.01), nighttime (r=.40, P=.02) and daytime symptoms (r=.38, P=.02), and health care utilization (r=.61, P2 1=9.7, P=.002), indicating the device's discriminating capacity. The optimal cutoff value of the device was 0.56 with a sensitivity of 51.3% and a specificity of 72.7%. Conclusions: This study demonstrates validity of ADAM as a symptom-monitoring device in teens with asthma. ADAM data reflect the current status of asthma control and predict asthma morbidity and quality of life for the near future. A monitoring device such as ADAM can increase patients' awareness of the patterns of cough for early detection of worsening asthma and has the potential for preventing serious and costly future consequences of asthma.

    Original languageEnglish
    Article numbere234
    JournalJournal of Medical Internet Research
    Volume17
    Issue number10
    DOIs
    Publication statusPublished - Oct 1 2015

    Fingerprint

    Asthma
    Equipment and Supplies
    Patient Acceptance of Health Care
    Cough
    Quality of Life
    Sensitivity and Specificity
    Quality of Health Care
    Vital Capacity
    Forced Expiratory Volume
    Patient Compliance
    Self Care
    ROC Curve
    Area Under Curve

    Keywords

    • Adolescent
    • Ambulatory monitoring
    • Asthma
    • Cough
    • Device
    • Validity

    ASJC Scopus subject areas

    • Health Informatics

    Cite this

    Evaluating the validity of an automated device for asthma monitoring for adolescents : Correlational design. / Rhee, Hyekyun; Belyea, Michael J.; Sterling, Mark; Bocko, Mark F.

    In: Journal of Medical Internet Research, Vol. 17, No. 10, e234, 01.10.2015.

    Research output: Contribution to journalArticle

    @article{a6fe47e0a19049f9a960f07b2ffac6e8,
    title = "Evaluating the validity of an automated device for asthma monitoring for adolescents: Correlational design",
    abstract = "Background: Symptom monitoring is a cornerstone of asthma self-management. Conventional methods of symptom monitoring have fallen short in producing objective data and eliciting patients' consistent adherence, particularly in teen patients. We have recently developed an Automated Device for Asthma Monitoring (ADAM) using a consumer mobile device as a platform to facilitate continuous and objective symptom monitoring in adolescents in vivo. Objective: The objectives of the study were to evaluate the validity of the device using spirometer data, fractional exhaled nitric oxide (FeNO), existing measures of asthma symptoms/control and health care utilization data, and to examine the sensitivity and specificity of the device in discriminating asthma cases from nonasthma cases. Methods: A total of 84 teens (42 teens with a current asthma diagnosis; 42 without asthma) aged between 13 and 17 years participated in the study. All participants used ADAM for 7 consecutive days during which participants with asthma completed an asthma diary two times a day. ADAM recorded the frequency of coughing for 24 hours throughout the 7-day trial. Pearson correlation and multiple regression were used to examine the relationships between ADAM data and asthma control, quality of life, and health care utilization at the time of the 7-day trial and 3 months later. A receiver operating characteristic (ROC) curve analysis was conducted to examine sensitivity and specificity based on the area under the curve (AUC) as an indicator of the device's capacity to discriminate between asthma versus nonasthma cases. Results: ADAM data (cough counts) were negatively associated with forced expiratory volume in first second of expiration (FEV1) (r=-.26, P=.05), forced vital capacity (FVC) (r=-.31, P=.02), and overall asthma control (r=-.41, P=.009) and positively associated with daily activity limitation (r=.46, P=.01), nighttime (r=.40, P=.02) and daytime symptoms (r=.38, P=.02), and health care utilization (r=.61, P2 1=9.7, P=.002), indicating the device's discriminating capacity. The optimal cutoff value of the device was 0.56 with a sensitivity of 51.3{\%} and a specificity of 72.7{\%}. Conclusions: This study demonstrates validity of ADAM as a symptom-monitoring device in teens with asthma. ADAM data reflect the current status of asthma control and predict asthma morbidity and quality of life for the near future. A monitoring device such as ADAM can increase patients' awareness of the patterns of cough for early detection of worsening asthma and has the potential for preventing serious and costly future consequences of asthma.",
    keywords = "Adolescent, Ambulatory monitoring, Asthma, Cough, Device, Validity",
    author = "Hyekyun Rhee and Belyea, {Michael J.} and Mark Sterling and Bocko, {Mark F.}",
    year = "2015",
    month = "10",
    day = "1",
    doi = "10.2196/jmir.4975",
    language = "English",
    volume = "17",
    journal = "Journal of Medical Internet Research",
    issn = "1439-4456",
    publisher = "Journal of medical Internet Research",
    number = "10",

    }

    TY - JOUR

    T1 - Evaluating the validity of an automated device for asthma monitoring for adolescents

    T2 - Correlational design

    AU - Rhee, Hyekyun

    AU - Belyea, Michael J.

    AU - Sterling, Mark

    AU - Bocko, Mark F.

    PY - 2015/10/1

    Y1 - 2015/10/1

    N2 - Background: Symptom monitoring is a cornerstone of asthma self-management. Conventional methods of symptom monitoring have fallen short in producing objective data and eliciting patients' consistent adherence, particularly in teen patients. We have recently developed an Automated Device for Asthma Monitoring (ADAM) using a consumer mobile device as a platform to facilitate continuous and objective symptom monitoring in adolescents in vivo. Objective: The objectives of the study were to evaluate the validity of the device using spirometer data, fractional exhaled nitric oxide (FeNO), existing measures of asthma symptoms/control and health care utilization data, and to examine the sensitivity and specificity of the device in discriminating asthma cases from nonasthma cases. Methods: A total of 84 teens (42 teens with a current asthma diagnosis; 42 without asthma) aged between 13 and 17 years participated in the study. All participants used ADAM for 7 consecutive days during which participants with asthma completed an asthma diary two times a day. ADAM recorded the frequency of coughing for 24 hours throughout the 7-day trial. Pearson correlation and multiple regression were used to examine the relationships between ADAM data and asthma control, quality of life, and health care utilization at the time of the 7-day trial and 3 months later. A receiver operating characteristic (ROC) curve analysis was conducted to examine sensitivity and specificity based on the area under the curve (AUC) as an indicator of the device's capacity to discriminate between asthma versus nonasthma cases. Results: ADAM data (cough counts) were negatively associated with forced expiratory volume in first second of expiration (FEV1) (r=-.26, P=.05), forced vital capacity (FVC) (r=-.31, P=.02), and overall asthma control (r=-.41, P=.009) and positively associated with daily activity limitation (r=.46, P=.01), nighttime (r=.40, P=.02) and daytime symptoms (r=.38, P=.02), and health care utilization (r=.61, P2 1=9.7, P=.002), indicating the device's discriminating capacity. The optimal cutoff value of the device was 0.56 with a sensitivity of 51.3% and a specificity of 72.7%. Conclusions: This study demonstrates validity of ADAM as a symptom-monitoring device in teens with asthma. ADAM data reflect the current status of asthma control and predict asthma morbidity and quality of life for the near future. A monitoring device such as ADAM can increase patients' awareness of the patterns of cough for early detection of worsening asthma and has the potential for preventing serious and costly future consequences of asthma.

    AB - Background: Symptom monitoring is a cornerstone of asthma self-management. Conventional methods of symptom monitoring have fallen short in producing objective data and eliciting patients' consistent adherence, particularly in teen patients. We have recently developed an Automated Device for Asthma Monitoring (ADAM) using a consumer mobile device as a platform to facilitate continuous and objective symptom monitoring in adolescents in vivo. Objective: The objectives of the study were to evaluate the validity of the device using spirometer data, fractional exhaled nitric oxide (FeNO), existing measures of asthma symptoms/control and health care utilization data, and to examine the sensitivity and specificity of the device in discriminating asthma cases from nonasthma cases. Methods: A total of 84 teens (42 teens with a current asthma diagnosis; 42 without asthma) aged between 13 and 17 years participated in the study. All participants used ADAM for 7 consecutive days during which participants with asthma completed an asthma diary two times a day. ADAM recorded the frequency of coughing for 24 hours throughout the 7-day trial. Pearson correlation and multiple regression were used to examine the relationships between ADAM data and asthma control, quality of life, and health care utilization at the time of the 7-day trial and 3 months later. A receiver operating characteristic (ROC) curve analysis was conducted to examine sensitivity and specificity based on the area under the curve (AUC) as an indicator of the device's capacity to discriminate between asthma versus nonasthma cases. Results: ADAM data (cough counts) were negatively associated with forced expiratory volume in first second of expiration (FEV1) (r=-.26, P=.05), forced vital capacity (FVC) (r=-.31, P=.02), and overall asthma control (r=-.41, P=.009) and positively associated with daily activity limitation (r=.46, P=.01), nighttime (r=.40, P=.02) and daytime symptoms (r=.38, P=.02), and health care utilization (r=.61, P2 1=9.7, P=.002), indicating the device's discriminating capacity. The optimal cutoff value of the device was 0.56 with a sensitivity of 51.3% and a specificity of 72.7%. Conclusions: This study demonstrates validity of ADAM as a symptom-monitoring device in teens with asthma. ADAM data reflect the current status of asthma control and predict asthma morbidity and quality of life for the near future. A monitoring device such as ADAM can increase patients' awareness of the patterns of cough for early detection of worsening asthma and has the potential for preventing serious and costly future consequences of asthma.

    KW - Adolescent

    KW - Ambulatory monitoring

    KW - Asthma

    KW - Cough

    KW - Device

    KW - Validity

    UR - http://www.scopus.com/inward/record.url?scp=84946733832&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84946733832&partnerID=8YFLogxK

    U2 - 10.2196/jmir.4975

    DO - 10.2196/jmir.4975

    M3 - Article

    VL - 17

    JO - Journal of Medical Internet Research

    JF - Journal of Medical Internet Research

    SN - 1439-4456

    IS - 10

    M1 - e234

    ER -