Evaluation of manual and non-manual components for sign language recognition

Medet Mukushev, Arman Sabyrov, Alfarabi Imashev, Kenessary Koishybay, Vadim Kimmelman, Anara Sandygulova

Research output: Chapter in Book/Report/Conference proceedingConference contribution

18 Citations (Scopus)

Abstract

The motivation behind this work lies in the need to differentiate between similar signs that differ in non-manual components present in any sign. To this end, we recorded full sentences signed by five native signers and extracted 5200 isolated sign samples of twenty frequently used signs in Kazakh-Russian Sign Language (K-RSL), which have similar manual components but differ in non-manual components (i.e. facial expressions, eyebrow height, mouth, and head orientation). We conducted a series of evaluations in order to investigate whether non-manual components would improve sign's recognition accuracy. Among standard machine learning approaches, Logistic Regression produced the best results, 78.2% of accuracy for dataset with 20 signs and 77.9% of accuracy for dataset with 2 classes (statement vs question).

Original languageEnglish
Title of host publicationLREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings
EditorsNicoletta Calzolari, Frederic Bechet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
PublisherEuropean Language Resources Association (ELRA)
Pages6073-6078
Number of pages6
ISBN (Electronic)9791095546344
Publication statusPublished - 2020
Event12th International Conference on Language Resources and Evaluation, LREC 2020 - Marseille, France
Duration: May 11 2020May 16 2020

Publication series

NameLREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings

Conference

Conference12th International Conference on Language Resources and Evaluation, LREC 2020
Country/TerritoryFrance
CityMarseille
Period5/11/205/16/20

Keywords

  • Information extraction
  • Machine learning methods
  • Sign language Recognition
  • Statistical

ASJC Scopus subject areas

  • Language and Linguistics
  • Education
  • Library and Information Sciences
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Evaluation of manual and non-manual components for sign language recognition'. Together they form a unique fingerprint.

Cite this