Extreme events in discrete nonlinear lattices

A. Maluckov, Lj Hadžievski, N. Lazarides, G. P. Tsironis

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

We perform statistical analysis on discrete nonlinear waves generated through modulational instability in the context of the Salerno model that interpolates between the intregable Ablowitz-Ladik (AL) equation and the nonintegrable discrete nonlinear Schrödinger equation. We focus on extreme events in the form of discrete rogue or freak waves that may arise as a result of rapid coalescence of discrete breathers or other nonlinear interaction processes. We find power law dependence in the wave amplitude distribution accompanied by an enhanced probability for freak events close to the integrable limit of the equation. A characteristic peak in the extreme event probability appears that is attributed to the onset of interaction of the discrete solitons of the AL equation and the accompanied transition from the local to the global stochasticity monitored through the positive Lyapunov exponent of a nonlinear map.

Original languageEnglish
Article number025601
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume79
Issue number2
DOIs
Publication statusPublished - Feb 2 2009

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Extreme events in discrete nonlinear lattices'. Together they form a unique fingerprint.

Cite this