Families Without Minimal Numberings

K. Sh Abeshev, S. A. Badaev, M. Mustafa

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

It is proved that for any nonzero computable ordinal and its arbitrary notation a, there exists a Σa − 1-computable family without minimal computable numberings.

Original languageEnglish
Pages (from-to)271-286
Number of pages16
JournalAlgebra and Logic
Volume53
Issue number4
DOIs
Publication statusPublished - 2014
Externally publishedYes

Fingerprint

Notation
Arbitrary
Family

Keywords

  • computable numbering
  • Ershov hierarchy
  • minimal numbering

ASJC Scopus subject areas

  • Analysis
  • Logic

Cite this

Families Without Minimal Numberings. / Abeshev, K. Sh; Badaev, S. A.; Mustafa, M.

In: Algebra and Logic, Vol. 53, No. 4, 2014, p. 271-286.

Research output: Contribution to journalArticle

Abeshev, K. Sh ; Badaev, S. A. ; Mustafa, M. / Families Without Minimal Numberings. In: Algebra and Logic. 2014 ; Vol. 53, No. 4. pp. 271-286.
@article{ba80d0419aa844d2a7ba9b225dcdf200,
title = "Families Without Minimal Numberings",
abstract = "It is proved that for any nonzero computable ordinal and its arbitrary notation a, there exists a Σa − 1-computable family without minimal computable numberings.",
keywords = "computable numbering, Ershov hierarchy, minimal numbering",
author = "Abeshev, {K. Sh} and Badaev, {S. A.} and M. Mustafa",
year = "2014",
doi = "10.1007/s10469-014-9290-9",
language = "English",
volume = "53",
pages = "271--286",
journal = "Algebra and Logic",
issn = "0002-5232",
publisher = "Springer New York",
number = "4",

}

TY - JOUR

T1 - Families Without Minimal Numberings

AU - Abeshev, K. Sh

AU - Badaev, S. A.

AU - Mustafa, M.

PY - 2014

Y1 - 2014

N2 - It is proved that for any nonzero computable ordinal and its arbitrary notation a, there exists a Σa − 1-computable family without minimal computable numberings.

AB - It is proved that for any nonzero computable ordinal and its arbitrary notation a, there exists a Σa − 1-computable family without minimal computable numberings.

KW - computable numbering

KW - Ershov hierarchy

KW - minimal numbering

UR - http://www.scopus.com/inward/record.url?scp=84922074779&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84922074779&partnerID=8YFLogxK

U2 - 10.1007/s10469-014-9290-9

DO - 10.1007/s10469-014-9290-9

M3 - Article

AN - SCOPUS:84922074779

VL - 53

SP - 271

EP - 286

JO - Algebra and Logic

JF - Algebra and Logic

SN - 0002-5232

IS - 4

ER -