TY - ADVS
T1 - Fiber-optic Sensing: Chirped FBGs measure thermal gradients for biomedical applications
A2 - Tosi, Daniele
PY - 2018/2
Y1 - 2018/2
N2 - Applications such as medical laser thermal ablation and photodynamic or thermo therapies are more effective when there is a real-time spatial understanding of the thermal energy delivered to biological tissue as a function of tissue depth. Using chirped fiber Bragg grating (FBG) fiber-optic sensors, researchers from Nazarbayev University (Astana, Kazakhstan), Universita Campus Bio-Medico di Roma (Rome, Italy), Politecnico di Torino (Torino, Italy), the Institute of Image-Guided Surgery (IHU; Strasbourg, France), the Research Centre of Frascati (Rome, Italy), and the University of Naples Parthenope (Naples, Italy) have developed a new technique that can resolve submillimeter-scale temperature patterns and estimate temperature gradients to advance a variety of thermal biomedical applications
AB - Applications such as medical laser thermal ablation and photodynamic or thermo therapies are more effective when there is a real-time spatial understanding of the thermal energy delivered to biological tissue as a function of tissue depth. Using chirped fiber Bragg grating (FBG) fiber-optic sensors, researchers from Nazarbayev University (Astana, Kazakhstan), Universita Campus Bio-Medico di Roma (Rome, Italy), Politecnico di Torino (Torino, Italy), the Institute of Image-Guided Surgery (IHU; Strasbourg, France), the Research Centre of Frascati (Rome, Italy), and the University of Naples Parthenope (Naples, Italy) have developed a new technique that can resolve submillimeter-scale temperature patterns and estimate temperature gradients to advance a variety of thermal biomedical applications
UR - https://www.laserfocusworld.com/articles/print/volume-54/issue-02/world-news/fiber-optic-sensing-chirped-fbgs-measure-thermal-gradients-for-biomedical-applications.html
M3 - Web publication/site
PB - Laser Focus World
ER -