Fiber-optic temperature and pressure sensors applied to radiofrequency thermal ablation in liver phantom: Methodology and experimental measurements

Daniele Tosi, Edoardo Gino Macchi, Alfredo Cigada

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Radiofrequency thermal ablation (RFA) is a procedure aimed at interventional cancer care and is applied to the treatment of small- and midsize tumors in lung, kidney, liver, and other tissues. RFA generates a selective high-temperature field in the tissue; temperature values and their persistency are directly related to the mortality rate of tumor cells. Temperature measurement in up to 3-5 points, using electrical thermocouples, belongs to the present clinical practice of RFA and is the foundation of a physical model of the ablation process. Fiber-optic sensors allow extending the detection of biophysical parameters to a vast plurality of sensing points, using miniature and noninvasive technologies that do not alter the RFA pattern. This work addresses the methodology for optical measurement of temperature distribution and pressure using four different fiber-optic technologies: fiber Bragg gratings (FBGs), linearly chirped FBGs (LCFBGs), Rayleigh scattering-based distributed temperature system (DTS), and extrinsic Fabry-Perot interferometry (EFPI). For each instrument, methodology for ex vivo sensing, as well as experimental results, is reported, leading to the application of fiber-optic technologies in vivo. The possibility of using a fiber-optic sensor network, in conjunction with a suitable ablation device, can enable smart ablation procedure whereas ablation parameters are dynamically changed.

Original languageEnglish
Article number909012
JournalJournal of Sensors
Volume2015
DOIs
Publication statusPublished - Jan 20 2015

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Fiber-optic temperature and pressure sensors applied to radiofrequency thermal ablation in liver phantom: Methodology and experimental measurements'. Together they form a unique fingerprint.

Cite this