Friedberg numberings in the Ershov hierarchy

Serikzhan A. Badaev, Mustafa Manat, Andrea Sorbi

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We show that for every ordinal notation ξ of a nonzero computable ordinal, there exists a (formula presented)—computable family which up to equivalence has exactly one Friedberg numbering, which does not induce the least element in the corresponding Rogers semilattice.

Original languageEnglish
Pages (from-to)59-73
Number of pages15
JournalArchive for Mathematical Logic
Volume54
Issue number1-2
DOIs
Publication statusPublished - Jan 31 2015
Externally publishedYes

Fingerprint

Ershov Hierarchy
Semilattice
Notation
Equivalence

Keywords

  • Computable numbering
  • Friedberg numbering
  • Hierarchy of Ershov
  • Rogers semilattice

ASJC Scopus subject areas

  • Logic
  • Philosophy

Cite this

Friedberg numberings in the Ershov hierarchy. / Badaev, Serikzhan A.; Manat, Mustafa; Sorbi, Andrea.

In: Archive for Mathematical Logic, Vol. 54, No. 1-2, 31.01.2015, p. 59-73.

Research output: Contribution to journalArticle

Badaev, Serikzhan A. ; Manat, Mustafa ; Sorbi, Andrea. / Friedberg numberings in the Ershov hierarchy. In: Archive for Mathematical Logic. 2015 ; Vol. 54, No. 1-2. pp. 59-73.
@article{80d920b2d8a847bba15c277b373b38c9,
title = "Friedberg numberings in the Ershov hierarchy",
abstract = "We show that for every ordinal notation ξ of a nonzero computable ordinal, there exists a (formula presented)—computable family which up to equivalence has exactly one Friedberg numbering, which does not induce the least element in the corresponding Rogers semilattice.",
keywords = "Computable numbering, Friedberg numbering, Hierarchy of Ershov, Rogers semilattice",
author = "Badaev, {Serikzhan A.} and Mustafa Manat and Andrea Sorbi",
year = "2015",
month = "1",
day = "31",
doi = "10.1007/s00153-014-0402-y",
language = "English",
volume = "54",
pages = "59--73",
journal = "Archive for Mathematical Logic",
issn = "0933-5846",
publisher = "Springer New York",
number = "1-2",

}

TY - JOUR

T1 - Friedberg numberings in the Ershov hierarchy

AU - Badaev, Serikzhan A.

AU - Manat, Mustafa

AU - Sorbi, Andrea

PY - 2015/1/31

Y1 - 2015/1/31

N2 - We show that for every ordinal notation ξ of a nonzero computable ordinal, there exists a (formula presented)—computable family which up to equivalence has exactly one Friedberg numbering, which does not induce the least element in the corresponding Rogers semilattice.

AB - We show that for every ordinal notation ξ of a nonzero computable ordinal, there exists a (formula presented)—computable family which up to equivalence has exactly one Friedberg numbering, which does not induce the least element in the corresponding Rogers semilattice.

KW - Computable numbering

KW - Friedberg numbering

KW - Hierarchy of Ershov

KW - Rogers semilattice

UR - http://www.scopus.com/inward/record.url?scp=84938060052&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84938060052&partnerID=8YFLogxK

U2 - 10.1007/s00153-014-0402-y

DO - 10.1007/s00153-014-0402-y

M3 - Article

AN - SCOPUS:84938060052

VL - 54

SP - 59

EP - 73

JO - Archive for Mathematical Logic

JF - Archive for Mathematical Logic

SN - 0933-5846

IS - 1-2

ER -