TY - JOUR

T1 - Heat transfer through hydrogenated graphene superlattice nanoribbons

T2 - a computational study

AU - Dehaghani, Maryam Zarghami

AU - Habibzadeh, Sajjad

AU - Farzadian, Omid

AU - Kostas, Konstantinos V

AU - Saeb, Mohammad Reza

AU - Spitas, Christos

AU - Mashhadzadeh, Amin Hamed

N1 - © 2022. The Author(s).

PY - 2022/5/13

Y1 - 2022/5/13

N2 - Optimization of thermal conductivity of nanomaterials enables the fabrication of tailor-made nanodevices for thermoelectric applications. Superlattice nanostructures are correspondingly introduced to minimize the thermal conductivity of nanomaterials. Herein we computationally estimate the effect of total length and superlattice period ([Formula: see text]) on the thermal conductivity of graphene/graphane superlattice nanoribbons using molecular dynamics simulation. The intrinsic thermal conductivity ([Formula: see text]) is demonstrated to be dependent on [Formula: see text]. The [Formula: see text] of the superlattice, nanoribbons decreased by approximately 96% and 88% compared to that of pristine graphene and graphane, respectively. By modifying the overall length of the developed structure, we identified the ballistic-diffusive transition regime at 120 nm. Further study of the superlattice periods yielded a minimal thermal conductivity value of 144 W m-1 k-1 at [Formula: see text] = 3.4 nm. This superlattice characteristic is connected to the phonon coherent length, specifically, the length of the turning point at which the wave-like behavior of phonons starts to dominate the particle-like behavior. Our results highlight a roadmap for thermal conductivity value control via appropriate adjustments of the superlattice period.

AB - Optimization of thermal conductivity of nanomaterials enables the fabrication of tailor-made nanodevices for thermoelectric applications. Superlattice nanostructures are correspondingly introduced to minimize the thermal conductivity of nanomaterials. Herein we computationally estimate the effect of total length and superlattice period ([Formula: see text]) on the thermal conductivity of graphene/graphane superlattice nanoribbons using molecular dynamics simulation. The intrinsic thermal conductivity ([Formula: see text]) is demonstrated to be dependent on [Formula: see text]. The [Formula: see text] of the superlattice, nanoribbons decreased by approximately 96% and 88% compared to that of pristine graphene and graphane, respectively. By modifying the overall length of the developed structure, we identified the ballistic-diffusive transition regime at 120 nm. Further study of the superlattice periods yielded a minimal thermal conductivity value of 144 W m-1 k-1 at [Formula: see text] = 3.4 nm. This superlattice characteristic is connected to the phonon coherent length, specifically, the length of the turning point at which the wave-like behavior of phonons starts to dominate the particle-like behavior. Our results highlight a roadmap for thermal conductivity value control via appropriate adjustments of the superlattice period.

U2 - 10.1038/s41598-022-12168-7

DO - 10.1038/s41598-022-12168-7

M3 - Article

C2 - 35562417

SN - 2045-2322

VL - 12

SP - 7966

JO - Scientific Reports

JF - Scientific Reports

IS - 1

ER -