High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis

Marwa Ghonaim, Ruslan Kalendar, Hoda Barakat, Nahla Elsherif, Naglaa Ashry, Alan H. Schulman

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Maize is one of the world’s most important crops and a model for grass genome research. Long terminal repeat (LTR) retrotransposons comprise most of the maize genome; their ability to produce new copies makes them efficient high-throughput genetic markers. Inter-retrotransposon-amplified polymorphisms (IRAPs) were used to study the genetic diversity of maize germplasm. Five LTR retrotransposons (Huck, Tekay, Opie, Ji, and Grande) were chosen, based on their large number of copies in the maize genome, whereas polymerase chain reaction primers were designed based on consensus LTR sequences. The LTR primers showed high quality and reproducible DNA fingerprints, with a total of 677 bands including 392 polymorphic bands showing 58% polymorphism between maize hybrid lines. These markers were used to identify genetic similarities among all lines of maize. Analysis of genetic similarity was carried out based on polymorphic amplicon profiles and genetic similarity phylogeny analysis. This diversity was expected to display ecogeographical patterns of variation and local adaptation. The clustering method showed that the varieties were grouped into three clusters differing in ecogeographical origin. Each of these clusters comprised divergent hybrids with convergent characters. The clusters reflected the differences among maize hybrids and were in accordance with their pedigree. The IRAP technique is an efficient high-throughput genetic marker-generating method.

Original languageEnglish
Pages (from-to)1589-1603
Number of pages15
JournalMolecular Biology Reports
Volume47
Issue number3
DOIs
Publication statusPublished - Mar 1 2020
Externally publishedYes

Keywords

  • Biodiversity
  • Retrotransposons
  • Transposable elements
  • Zea mays

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics

Fingerprint Dive into the research topics of 'High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis'. Together they form a unique fingerprint.

Cite this