TY - JOUR
T1 - Impact of nanopore confinement on phase behavior and enriched gas minimum miscibility pressure in asphaltenic tight oil reservoirs
AU - Keyvani, Fatemeh
AU - Safaei, Ali
AU - Kazemzadeh, Yousef
AU - Riazi, Masoud
AU - Qajar, Jafar
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - Miscible gas injection in tight/shale oil reservoirs presents a complex problem due to various factors, including the presence of a large number of nanopores in the rock structure and asphaltene and heavy components in crude oil. This method performs best when the gas injection pressure exceeds the minimum miscibility pressure (MMP). Accordingly, accurate calculation of the MMP is of special importance. A critical issue that needs to be considered is that the phase behavior of the fluid in confined nanopores is substantially different from that of conventional reservoirs. The confinement effect may significantly affect fluid properties, flow, and transport phenomena characteristics in pore space, e.g., considerably changing the critical properties and enhancing fluid adsorption on the pore wall. In this study, we have investigated the MMP between an asphaltenic crude oil and enriched natural gas using Peng-Robinson (PR) and cubic-plus-association (CPA) equations of state (EoSs) by considering the effect of confinement, adsorption, the shift of critical properties, and the presence of asphaltene. According to the best of our knowledge, this is the first time a model has been developed considering all these factors for use in porous media. We used the vanishing interfacial tension (VIT) method and slim tube test data to calculate the MMP and examined the effects of pore radius, type/composition of injected gas, and asphaltene type on the computed MMP. The results showed that the MMP increased with an increasing radius of up to 100 nm and then remained almost constant. This is while the gas enrichment reduced the MMP. Asphaltene presence changed the trend of IFT reduction and delayed the miscibility achievement so that it was about 61% different from the model without the asphaltene precipitation effect. However, the type of asphaltene had little impact on the MMP, and the controlling factor was the amount of asphaltene in the oil. Moreover, although cubic EoSs are particularly popular for their simplicity and accuracy in predicting the behavior of hydrocarbon fluids, the CPA EoS is more accurate for asphaltenic oils, especially when the operating pressure is within the asphaltene precipitation range.
AB - Miscible gas injection in tight/shale oil reservoirs presents a complex problem due to various factors, including the presence of a large number of nanopores in the rock structure and asphaltene and heavy components in crude oil. This method performs best when the gas injection pressure exceeds the minimum miscibility pressure (MMP). Accordingly, accurate calculation of the MMP is of special importance. A critical issue that needs to be considered is that the phase behavior of the fluid in confined nanopores is substantially different from that of conventional reservoirs. The confinement effect may significantly affect fluid properties, flow, and transport phenomena characteristics in pore space, e.g., considerably changing the critical properties and enhancing fluid adsorption on the pore wall. In this study, we have investigated the MMP between an asphaltenic crude oil and enriched natural gas using Peng-Robinson (PR) and cubic-plus-association (CPA) equations of state (EoSs) by considering the effect of confinement, adsorption, the shift of critical properties, and the presence of asphaltene. According to the best of our knowledge, this is the first time a model has been developed considering all these factors for use in porous media. We used the vanishing interfacial tension (VIT) method and slim tube test data to calculate the MMP and examined the effects of pore radius, type/composition of injected gas, and asphaltene type on the computed MMP. The results showed that the MMP increased with an increasing radius of up to 100 nm and then remained almost constant. This is while the gas enrichment reduced the MMP. Asphaltene presence changed the trend of IFT reduction and delayed the miscibility achievement so that it was about 61% different from the model without the asphaltene precipitation effect. However, the type of asphaltene had little impact on the MMP, and the controlling factor was the amount of asphaltene in the oil. Moreover, although cubic EoSs are particularly popular for their simplicity and accuracy in predicting the behavior of hydrocarbon fluids, the CPA EoS is more accurate for asphaltenic oils, especially when the operating pressure is within the asphaltene precipitation range.
KW - Asphaltene
KW - Confinement effect
KW - Equation of state
KW - Minimum miscibility pressure
KW - Miscible gas injection
KW - Phase behavior
UR - http://www.scopus.com/inward/record.url?scp=85195888269&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85195888269&partnerID=8YFLogxK
U2 - 10.1038/s41598-024-64194-2
DO - 10.1038/s41598-024-64194-2
M3 - Article
C2 - 38862707
AN - SCOPUS:85195888269
SN - 2045-2322
VL - 14
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 13405
ER -