Impact of SO42−, Ca2+, and Mg2+ ions in Caspian Sea ion-engineered water on the rate of wettability alteration in carbonates

Meruyet Bazhanova, Peyman Pourafshary

Research output: Contribution to journalArticlepeer-review

Abstract

Tuning the salinity and concentration of potential-determining ions, such as Mg2+, Ca2+, and SO42−, could alter the wettability toward a more water-wet state. The rate of alteration in carbonate rock wettability is a critical parameter to design the duration of the ion-engineered water flooding. Characteristic experiments, such as dynamic contact angle and pH measurements, ion chromatography, and spontaneous imbibition, are applied to study the rate of wettability alteration using different samples of ion-engineered water. Our study shows that the Caspian Sea water (CSW) with a salinity of 15,000 ppm is an efficient displacing fluid as it can initiate the multi-ion exchange (MIE) mechanism and alter the wettability from 86° to 35° within 2 d. The adjustment of salinity and active ion concentration makes the MIE mechanism much faster. For example, with five times diluted CSW, the same change in wettability is only achieved only within 9 h. Spiking the concentration of Ca2+ and SO42− ions is used to further shift the contact angle to 22° within 9 h. Spontaneous imbibition tests demonstrate that the rate of oil production doubles as a result of the ion-engineered brine due to the faster MIE process. The results obtained from this research work suggest that even a short period of interaction with optimized engineered water can affect the brine, oil, and carbonates interactions and change the reservoir rock initial wettability from neutral to strongly water-wet state. This allows to efficiently design engineered water flooding based on CSW in the field scale and make such projects more profitable.

Original languageEnglish
Pages (from-to)3281-3293
Number of pages13
JournalJournal of Petroleum Exploration and Production Technology
Volume10
Issue number8
DOIs
Publication statusPublished - Dec 1 2020

Keywords

  • Active ions
  • Caspian sea
  • Ion-engineered water
  • Low salinity water
  • Wettability

ASJC Scopus subject areas

  • Geotechnical Engineering and Engineering Geology
  • Energy(all)

Fingerprint Dive into the research topics of 'Impact of SO<sub>4</sub><sup>2−</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup> ions in Caspian Sea ion-engineered water on the rate of wettability alteration in carbonates'. Together they form a unique fingerprint.

Cite this