In vitro dermal bioaccessibility of selected metals in contaminated soil and mine tailings and human health risk characterization

Laura T. Chaparro Leal, Mert Guney, Gerald J. Zagury

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Dermal exposure to contaminated sites has generally received less attention than oral/inhalation exposure due to limited exposure scenarios and less perceived potential for toxicity, however, the risk can be significant for specific contaminants and scenarios. The present study aims to (1) measure Cr, Ni, Pb, and Zn contamination in soil and mine tailings samples (n = 7), (2) determine the dermal bioaccessibility of these metals via in vitro tests using two synthetic sweat formulations (EN 1811; NIHS 96-10), and (3) obtain dermal absorbed doses (DADs) for children's and adults’ exposure scenarios and compare them to derived dermal reference values. The NIHS 96-10 formulation yielded higher bioaccessibility values for all metals than EN 1811, possibly due to its lower pH. Zn had the highest bioaccessibility for both formulations whereas Cr had the lowest. There was some evidence of adsorption of initially mobilized Pb and Zn to soil with longer test times, resulting in slightly lower bioaccessibility after 8 h of testing with respect to 2 h. The calculated DADs showed that the risk for exposure was acceptable (DAD < derived dermal reference value) for all metals except for Cr(VI) considering exposure to two of the samples. The risk in the case of children's exposure scenario (play on contaminated medium) was significantly higher than the case for the adults’ exposure scenario (exposure in industrial context). Additional bioaccessibility research is recommended on additional samples with differing properties/contamination profiles, on additional contaminants with high dermal affinity (especially As), and on the development/validation of in vitro dermal bioaccessibility tests.

Original languageEnglish
Pages (from-to)42-49
Number of pages8
JournalChemosphere
Volume197
DOIs
Publication statusPublished - Apr 1 2018

Keywords

  • Dermal absorption
  • Heavy metals
  • Human health risk characterization
  • In vitro dermal bioaccessibility
  • Mine tailings
  • Soil contamination

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Chemistry(all)
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint Dive into the research topics of 'In vitro dermal bioaccessibility of selected metals in contaminated soil and mine tailings and human health risk characterization'. Together they form a unique fingerprint.

Cite this