TY - GEN
T1 - IRS-Assisted Millimeter-wave Massive MIMO with Transmit Antenna Selection for IoT Networks
AU - Elganimi, Taissir Y.
AU - Rabie, Khaled M.
AU - Nauryzbayev, Galymzhan
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - An intelligent reflecting surface (IRS)-assisted millimeter-wave (mmWave) massive multiple input multiple output (MIMO) system with transmit antenna selection (TAS) using orthogonal space-time block codes (OSTBC) scheme is proposed in this paper. This system combines TAS and IRS with hybrid analog-digital beamforming (HBF) for 60 GHz mmWave communications in order to exploit the benefits of TAS, OSTBC, analog beamforming (ABF), and transmit digital precoding techniques. The proposed system, however, benefits from the transmit diversity gain of OSTBC scheme as well as from the signal-to-noise ratio (SNR) gains of both the beamformer and the IRS technology. The simulation results show that TAS-OSTBC system with zero-forcing precoding outperforms the conventional TAS-OSTBC scheme. Furthermore, the bit error rate (BER) performance significantly improves as the number of antenna array elements increases due to providing a beamforming gain. In addition, increasing the number of reflecting elements further enhances the BER performance. It is also found from the simulation results that the TAS-OSTBC system with hybrid precoding has better performance than that of TAS-OSTBC with ABF, and IRS-assisted systems significantly outperform the conventional systems without the IRS technology. This makes the proposed IRS-assisted system an appealing solution for internet-of-things (IoT) networks.
AB - An intelligent reflecting surface (IRS)-assisted millimeter-wave (mmWave) massive multiple input multiple output (MIMO) system with transmit antenna selection (TAS) using orthogonal space-time block codes (OSTBC) scheme is proposed in this paper. This system combines TAS and IRS with hybrid analog-digital beamforming (HBF) for 60 GHz mmWave communications in order to exploit the benefits of TAS, OSTBC, analog beamforming (ABF), and transmit digital precoding techniques. The proposed system, however, benefits from the transmit diversity gain of OSTBC scheme as well as from the signal-to-noise ratio (SNR) gains of both the beamformer and the IRS technology. The simulation results show that TAS-OSTBC system with zero-forcing precoding outperforms the conventional TAS-OSTBC scheme. Furthermore, the bit error rate (BER) performance significantly improves as the number of antenna array elements increases due to providing a beamforming gain. In addition, increasing the number of reflecting elements further enhances the BER performance. It is also found from the simulation results that the TAS-OSTBC system with hybrid precoding has better performance than that of TAS-OSTBC with ABF, and IRS-assisted systems significantly outperform the conventional systems without the IRS technology. This makes the proposed IRS-assisted system an appealing solution for internet-of-things (IoT) networks.
KW - Intelligent reflecting surface (IRS)
KW - millimeter-wave massive MIMO
KW - OSTBC
KW - transmit antenna selection (TAS)
UR - http://www.scopus.com/inward/record.url?scp=85169784078&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85169784078&partnerID=8YFLogxK
U2 - 10.1109/VTC2023-Spring57618.2023.10199562
DO - 10.1109/VTC2023-Spring57618.2023.10199562
M3 - Conference contribution
AN - SCOPUS:85169784078
T3 - IEEE Vehicular Technology Conference
BT - 2023 IEEE 97th Vehicular Technology Conference, VTC 2023-Spring - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 97th IEEE Vehicular Technology Conference, VTC 2023-Spring
Y2 - 20 June 2023 through 23 June 2023
ER -