Isoperimetric inequalities for the cauchy-dirichlet heat operator

Tynysbek Sh Kal’menov, Aidyn Kassymov, Durvudkhan Suragan

Research output: Contribution to journalArticle

Abstract

In this paper we prove that the first s-number of the Cauchy-Dirichlet heat operator is minimized in a circular cylinder among all Euclidean cylindric domains of a given measure. It is an analogue of the Rayleigh-Faber-Krahn inequality for the heat operator. We also prove a Hong-Krahn-Szegö and a Payne-Pólya-Weinberger type inequalities for the Cauchy-Dirichlet heat operator.

Original languageEnglish
Pages (from-to)885-892
Number of pages8
JournalFilomat
Volume32
Issue number3
DOIs
Publication statusPublished - Jan 1 2018

Fingerprint

Isoperimetric Inequality
Cauchy
Dirichlet
Heat
Operator
Circular Cylinder
Rayleigh
Euclidean
Analogue

Keywords

  • Cauchy-Dirichlet heat operator
  • Hong-Krahn-Szegö inequality
  • Payne-Pólya-weinberger inequality
  • Rayleigh-Faber-Krahn inequality
  • S-number

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Isoperimetric inequalities for the cauchy-dirichlet heat operator. / Kal’menov, Tynysbek Sh; Kassymov, Aidyn; Suragan, Durvudkhan.

In: Filomat, Vol. 32, No. 3, 01.01.2018, p. 885-892.

Research output: Contribution to journalArticle

Kal’menov, Tynysbek Sh ; Kassymov, Aidyn ; Suragan, Durvudkhan. / Isoperimetric inequalities for the cauchy-dirichlet heat operator. In: Filomat. 2018 ; Vol. 32, No. 3. pp. 885-892.
@article{7924070d95c240989801037734cbfe97,
title = "Isoperimetric inequalities for the cauchy-dirichlet heat operator",
abstract = "In this paper we prove that the first s-number of the Cauchy-Dirichlet heat operator is minimized in a circular cylinder among all Euclidean cylindric domains of a given measure. It is an analogue of the Rayleigh-Faber-Krahn inequality for the heat operator. We also prove a Hong-Krahn-Szeg{\"o} and a Payne-P{\'o}lya-Weinberger type inequalities for the Cauchy-Dirichlet heat operator.",
keywords = "Cauchy-Dirichlet heat operator, Hong-Krahn-Szeg{\"o} inequality, Payne-P{\'o}lya-weinberger inequality, Rayleigh-Faber-Krahn inequality, S-number",
author = "Kal’menov, {Tynysbek Sh} and Aidyn Kassymov and Durvudkhan Suragan",
year = "2018",
month = "1",
day = "1",
doi = "10.2298/FIL1803885K",
language = "English",
volume = "32",
pages = "885--892",
journal = "Filomat",
issn = "0354-5180",
publisher = "Universitet of Nis",
number = "3",

}

TY - JOUR

T1 - Isoperimetric inequalities for the cauchy-dirichlet heat operator

AU - Kal’menov, Tynysbek Sh

AU - Kassymov, Aidyn

AU - Suragan, Durvudkhan

PY - 2018/1/1

Y1 - 2018/1/1

N2 - In this paper we prove that the first s-number of the Cauchy-Dirichlet heat operator is minimized in a circular cylinder among all Euclidean cylindric domains of a given measure. It is an analogue of the Rayleigh-Faber-Krahn inequality for the heat operator. We also prove a Hong-Krahn-Szegö and a Payne-Pólya-Weinberger type inequalities for the Cauchy-Dirichlet heat operator.

AB - In this paper we prove that the first s-number of the Cauchy-Dirichlet heat operator is minimized in a circular cylinder among all Euclidean cylindric domains of a given measure. It is an analogue of the Rayleigh-Faber-Krahn inequality for the heat operator. We also prove a Hong-Krahn-Szegö and a Payne-Pólya-Weinberger type inequalities for the Cauchy-Dirichlet heat operator.

KW - Cauchy-Dirichlet heat operator

KW - Hong-Krahn-Szegö inequality

KW - Payne-Pólya-weinberger inequality

KW - Rayleigh-Faber-Krahn inequality

KW - S-number

UR - http://www.scopus.com/inward/record.url?scp=85047989129&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047989129&partnerID=8YFLogxK

U2 - 10.2298/FIL1803885K

DO - 10.2298/FIL1803885K

M3 - Article

VL - 32

SP - 885

EP - 892

JO - Filomat

JF - Filomat

SN - 0354-5180

IS - 3

ER -