Isoperimetric inequalities for the cauchy-dirichlet heat operator

Tynysbek Sh Kal’menov, Aidyn Kassymov, Durvudkhan Suragan

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


In this paper we prove that the first s-number of the Cauchy-Dirichlet heat operator is minimized in a circular cylinder among all Euclidean cylindric domains of a given measure. It is an analogue of the Rayleigh-Faber-Krahn inequality for the heat operator. We also prove a Hong-Krahn-Szegö and a Payne-Pólya-Weinberger type inequalities for the Cauchy-Dirichlet heat operator.

Original languageEnglish
Pages (from-to)885-892
Number of pages8
Issue number3
Publication statusPublished - Jan 1 2018


  • Cauchy-Dirichlet heat operator
  • Hong-Krahn-Szegö inequality
  • Payne-Pólya-weinberger inequality
  • Rayleigh-Faber-Krahn inequality
  • S-number

ASJC Scopus subject areas

  • General Mathematics


Dive into the research topics of 'Isoperimetric inequalities for the cauchy-dirichlet heat operator'. Together they form a unique fingerprint.

Cite this